The reversible formation of hydrogen bonds is a ubiquitous mechanism for controlling molecular assembly in biological systems. However, achieving predictable reversibility in artificial two-dimensional (2D) materials remains a significant challenge. Here, we use an external electric field (EEF) at the solid/liquid interface to trigger the switching of H-bond-linked 2D networks using a scanning tunneling microscope.
View Article and Find Full Text PDFThe reactions of O2 with S vacancy sites within a MoS2 monolayer were investigated using density functional theory calculations. We considered the following defects: single S vacancy, double S vacancy, two adjacent S vacancies and two S vacancies separated by a sulphur atom. We found that the surface distribution of S vacancy sites plays a key role in determining the surface reactivity towards O2.
View Article and Find Full Text PDFLangmuir
September 2016
The addition of the reducing agent tris(2-carboxyethyl) phosphine (TCEP) during the formation of α,ω-alkanedithiols monolayers on Au(111) using the immersion method produces the assembly of monolayers with bicoordinated molecules (both S-terminal groups bound to the surface) that have a reductive desorption potential that is more positive than for monolayers with monocoordinated molecules in a standing up configuration. We show that the use of TCEP either during formation of the monolayer or as a post treatment procedure allows the controlled formation of monolayers with bicoordinated or monocoordinated configurations. Density functional theory (DFT) calculations were performed to elucidate the role of TCEP in the formation of the bicoordinated configuration.
View Article and Find Full Text PDF