Publications by authors named "Patricia A Gonzales"

Vasopressin controls transport in the renal collecting duct, in part, by regulating transcription. This complex process, which can involve translocation and/or modification of transcriptional regulators, is not completely understood. Here, we applied a method for large-scale profiling of nuclear proteins to quantify vasopressin-induced changes in the nuclear proteome of cortical collecting duct (mpkCCD) cells.

View Article and Find Full Text PDF

Exosomes represent an important and readily isolated subset of the urinary proteome that has the potential to shed much insight on the health status of the kidney. Each segment of the nephron sheds exosomes into the urine. Exosomes are rich in potential biomarkers, especially membrane proteins such as transporters and receptors that may be up- or downregulated during disease states.

View Article and Find Full Text PDF

Urinary exosomes have been proposed as starting material for discovery of protein biomarkers of kidney disease. Current protocols for their isolation use a two-step differential centrifugation process. Due to their low density, exosomes are expected to remain in the low-speed (17,000 x g) supernatant and to sediment only when the sample is spun at high speed (200,000 x g).

View Article and Find Full Text PDF

Normal human urine contains large numbers of exosomes, which are 40- to 100-nm vesicles that originate as the internal vesicles in multivesicular bodies from every renal epithelial cell type facing the urinary space. Here, we used LC-MS/MS to profile the proteome of human urinary exosomes. Overall, the analysis identified 1132 proteins unambiguously, including 177 that are represented on the Online Mendelian Inheritance in Man database of disease-related genes, suggesting that exosome analysis is a potential approach to discover urinary biomarkers.

View Article and Find Full Text PDF

In the renal collecting duct, vasopressin controls transport of water and solutes via regulation of membrane transporters such as aquaporin-2 (AQP2) and the epithelial urea transporter UT-A. To discover proteins potentially involved in vasopressin action in rat kidney collecting ducts, we enriched membrane "raft" proteins by harvesting detergent-resistant membranes (DRMs) of the inner medullary collecting duct (IMCD) cells. Proteins were identified and quantified with LC-MS/MS.

View Article and Find Full Text PDF

We present the evidence for a direct physical association of cystic fibrosis transmembrane conductance regulator (CFTR) and epithelial sodium channel (ENaC), two major ion channels implicated in the pathophysiology of cystic fibrosis, a devastating inherited disease. We employed fluorescence resonance energy transfer, a distance-dependent imaging technique with capability to detect molecular complexes with near angstrom resolution, to estimate the proximity of CFTR and ENaC, an essential variable for possible physical interaction to occur. Fluorescence resonance energy transfer studies were complemented with a classic biochemical approach: coimmunoprecipitation.

View Article and Find Full Text PDF

Recent progress in biotechnology offers the promise of better medical care at lower costs. Among the techniques that show the greatest promise is mass spectrometry of proteins, which can identify proteins present in body fluids and tissue specimens at a large scale. Because urine can be collected in large amounts in a non-invasive fashion, the potential exists to use mass spectrometry to discover urinary biomarkers that are early predictors of renal disease, or useful in making therapeutic choices.

View Article and Find Full Text PDF