Dihydroxyacetone (DHA) can be used as an energy source by many cell types; however, it is toxic at high concentrations. The enzyme dihydroxyacetone kinase (DAK) has shown to be involved in DHA detoxification and osmoregulation. Among protozoa of the genus Trypanosoma, T.
View Article and Find Full Text PDFTrypanosoma cruzi, the etiological agent of Chagas disease, releases factors, including antigens from the trans-sialidase (TS) superfamily, which modulate the host immune responses. Tc13 antigens belong to group IV of TSs and are characterized by C-terminal EPKSA repeats. Here, we studied the effect of the Tc13 antigen from the Tulahuén strain, Tc13Tul, on primary cultures of splenocytes from naïve BALB/c mice.
View Article and Find Full Text PDFParasitology
August 2018
Several ortho-naphthoquinones (o-NQs) have trypanocidal activity against Trypanosoma cruzi, the aetiological agent of Chagas disease. Previously, we demonstrated that the aldo-keto reductase from this parasite (TcAKR) reduces o-NQs, such as β-lapachone (β-Lap) and 9,10-phenanthrenequinone (9,10-PQ), with concomitant reactive oxygen species (ROS) production. Recent characterization of TcAKR activity and expression in two T.
View Article and Find Full Text PDFBenznidazole (Bz), the drug used for treatment of Chagas' disease (caused by the protozoan Trypanosoma cruzi), is activated by a parasitic NADH-dependent type I nitroreductase (NTR I). However, several studies have shown that other enzymes are involved. The aim of this study was to evaluate whether the aldo-keto reductase from T.
View Article and Find Full Text PDFTc13Tul antigen is expressed in the mammalian stages of Trypanosoma cruzi, the etiological agent of Chagas' disease. Here, we designed and validated an enzyme-linked immunosorbent assay using the recombinant Tc13Tul (Tc13Tul-ELISA) and found that it had 82.5% sensitivity and 97.
View Article and Find Full Text PDFDrugs currently used for treatment of Trypanosoma cruzi infection, the ethiological agent of Chagas' disease, have shown side effects and variable efficiency. With the aim to describe parasite enzymes involved in the mechanisms of action of trypanocidal drugs and since it has been reported that reductases are crucial in their metabolism, we attempted to identify novel NADPH-dependent oxido-reductases from T. cruzi.
View Article and Find Full Text PDF