Synthetically derived trimethylene interstrand DNA cross-links have been used as surrogates for the native cross-links that arise from the 1,N(2)-deoxyguanosine adducts derived from alpha,beta-unsaturated aldehydes. The native enal-mediated cross-linking occurs in the 5'-CpG-3' sequence context but not in the 5'-GpC-3' sequence context. The ability of the native enal-derived 1,N(2)-dG adducts to induce interstrand DNA cross-links in the 5'-CpG-3' sequence as opposed to the 5'-GpC-3' sequence is attributed to the destabilization of the DNA duplex in the latter sequence context.
View Article and Find Full Text PDFMalondialdehyde interstrand cross-links in DNA show strong preference for 5'-d(CpG) sequences. The cross-links are unstable and a trimethylene cross-link has been used as a surrogate for structural studies. A previous structural study of the 5'-d(CpG) cross-link in the sequence 5'-d(AGGCGCCT), where G is the modified nucleotide, by NMR spectroscopy and molecular dynamics using a simulated annealing protocol showed the guanine residues and the tether lay approximately in a plane such that the trimethylene tether and probably the malondialdehyde tether, as well, could be accommodated without major disruptions of duplex structure [Dooley et al.
View Article and Find Full Text PDF