Publications by authors named "Patricia A Chambers"

Premise: Aquatic macrophyte species abundance and nutrient affinity are used in metrics to assess the trophic condition of lakes and rivers. The development of these indices is often regional, with inter-regional comparisons being complicated by the lack of taxonomic overlap. Here, we use a traits-based approach to expand the geographic scope of existing metrics.

View Article and Find Full Text PDF

Phosphorus (P) is an essential macronutrient for algal communities, but in excess can exacerbate stream eutrophication. However, P loadings to streams vary temporally from continuous to episodic as a result of inputs from point and non-point sources, respectively. P loading pattern can thus alter the temporal availability of P and may influence effects of P enrichment on algal communities.

View Article and Find Full Text PDF

Bitumen mining and upgrading in northeastern Alberta, Canada, releases toxic pollutants into the atmosphere, including mercury (Hg) and methylmercury (MeHg). This Hg and MeHg is then deposited to the surrounding landscape; however, the fate of these contaminants remains unknown. Here, we compare snowpack chemistry to high-frequency measurements of river water quality across six watersheds (five impacted by oil sands development and one unimpacted).

View Article and Find Full Text PDF

Bitumen-bearing suspended sediment (SS) eroded from the McMurray Formation (MF) are fine grained (silts and clays) and coated with natural hydrophobic oils. This results in poor settling and long range transport of associated contaminants. There was a longitudinal increase in polycyclic aromatic compound (PAC) concentrations for rivers that erode the MF from upstream to downstream regardless of time-of-year, while loads were substantially increased during high flow periods when the erosive forces are the greatest and the overland flow contribution is high.

View Article and Find Full Text PDF

The emergent aquatic plant, is an easily-identified and commonly-found species in the Great Plains region of North America and has the potential to be a bioindicator of nitrogen (N) and phosphorus (P) because of its previously-identified leaf plasticity in response to nutrient conditions. To identify associations between leaf morphology and soil and water nutrients, we conducted: (1) a 10-week controlled experiment in which plants were grown in nutrient-enriched sediment, nutrient-enriched water, or unamended control trials, and (2) a field study where emergent leaves were collected from 15 streams of varying nutrient concentrations. Plants grown in experimentally enriched sediment were more productive than those grown in enriched water or control conditions: they produced more emergent leaves and tubers, had a larger final biomass and height, and developed emergent leaves that showed a consistent increase in size and unique change in shape over time.

View Article and Find Full Text PDF

Enterococcus spp. from two poultry farms and proximate surface and ground water sites in an area of intensive poultry production were tested for resistance to 16 clinical antibiotics. Resistance patterns were compared to assess trends and possible correlations for specific antimicrobials and levels of resistance.

View Article and Find Full Text PDF
Article Synopsis
  • Small watersheds in the Canadian Prairies experience seasonal disconnections in their hydrologic networks, primarily linked to snowmelt, which is a vital hydrological event affecting nutrient export.
  • During snowmelt, higher concentrations of total phosphorus (TP) and total nitrogen (TN) were recorded, highlighting the dominance of dissolved nutrients due to specific environmental conditions like flat terrain and frozen soil.
  • The study found significant correlations between nutrient loads and agricultural factors, suggesting that snowmelt significantly influences nutrient export to aquatic systems, necessitating improved land use management to mitigate impacts on bodies of water like Lake Winnipeg.
View Article and Find Full Text PDF

Inputs of nutrients (P and N) to freshwaters can cause excessive aquatic plant growth, depletion of oxygen, and deleterious changes in diversity of aquatic fauna. As part of a "National Agri-Environmental Standards Initiative," the Government of Canada committed to developing environmental thresholds for nutrients to protect ecological condition of agricultural streams. Analysis of data from >200 long-term monitoring stations across Canada and detailed ecological study at ~70 sites showed that agricultural land cover was associated with increased nutrient concentrations in streams and this, in turn, was associated with increased sestonic and benthic algal abundance, loss of sensitive benthic macroinvertebrate taxa, and an increase in benthic diatom taxa indicative of eutrophication.

View Article and Find Full Text PDF

Pharmaceuticals are emerging contaminants with potential risks to the environment and human health. A liquid chromatography-tandem mass spectrometry (LC-MS-MS) method was developed for determination of the antimicrobials virginiamycin, monensin, salinomycin, narasin and nicarbazin in poultry litter and soil. This method involves methanol extraction and clean-up of extracts through glass microfibre filters, introduction of the extracts and separation of compounds on a Zorbax Eclipse XDB C8 column, and compound detection in a Quattro Micro Micromass spectrometer.

View Article and Find Full Text PDF

Inputs of nutrients (phosphorus, P, and nitrogen, N) to coastal and fresh waters can accelerate eutrophication, resulting in excessive aquatic plant growth, depletion of oxygen, and deleterious changes in abundance and diversity of organisms. Using long-term (approximately 1995-2005) monitoring data from agriculturally-dominated watersheds in southern Ontario and Quebec, Canada, we developed and tested several approaches for setting targets for N and P. Our research showed that it is possible to set scientifically-credible targets for total P and total N to protect ecological condition of streams in agricultural landscapes, and define achievable targets attainable following adoption of beneficial management practices.

View Article and Find Full Text PDF

Anthropogenic inputs of nitrogen (N), phosphorus (P) and oxygen-consuming material to aquatic ecosystems can change nutrient dynamics, deplete oxygen, and change abundance and diversity of aquatic plants and animals. The Northern Rivers Ecosystem Initiative required a research and assessment program to establish the contribution of pulp mill and sewage discharges to eutrophication and depressions in dissolved oxygen (DO) in the Athabasca and Wapiti rivers of northern Alberta, Canada and examine the adequacy of existing guidelines for protecting these systems. Analysis of long-term data showed that total N (TN) and total P (TP) concentrations in exposed river reaches exceeded concentrations in reference reaches by < or = 2 times for the Athabasca River, and by 9.

View Article and Find Full Text PDF