The transition from presumptive (immunoassay) drug screening to definitive screening has continued in the practice of analytical toxicology. Development of a ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) screening method for over sixty drugs and metabolites (analytes) in urine has been reported by the authors and has been applied in probation, drug court, social services, chemical dependency, pain management and addiction medicine casework. Testing by the definitive screening method has increased both the rate and diversity of initial-positive drug findings, due to the lower positive thresholds and wider panel of analytes.
View Article and Find Full Text PDFDrug and metabolite (analytes) identification together with quantification is an important analytical tool in forensic and clinical toxicology. We report the development and validation of a definitive detection and quantification method (UPLC-MS-MS) for initial screening of 64 analytes in urine. The principle of the method is a quantitative extension of a recently reported threshold accurate calibration (TAC) technique which employs a rapid dual-specimen analysis i.
View Article and Find Full Text PDFDrug screening is an essential analytical tool for detection of therapeutic, illicit and emerging drug use. Presumptive immunoassay screening is widely used, while initial definitive testing by chromatography-coupled mass spectrometry is hampered due to complex pre-analysis steps, long chromatography time and matrix effects. The aim of this study is to develop and validate a definitive test for rapid and threshold accurate screening of 33 drugs or metabolites (analytes) in urine.
View Article and Find Full Text PDFEzrin, a member of the ezrin-radixin-moesin family (ERM), is an essential regulator of the structure of microvilli on the apical aspect of epithelial cells. Ezrin provides a linkage between membrane-associated proteins and F-actin, oscillating between active/open and inactive/closed states, and is regulated in part by phosphorylation of a C-terminal threonine. In the open state, ezrin can bind a number of ligands, but in the closed state the ligand-binding sites are inaccessible.
View Article and Find Full Text PDFIn this paper, we describe how a dynamic regulatory process is necessary to restrict microvilli to the apical aspect of polarized epithelial cells. We found that local phosphocycling regulation of ezrin, a critical plasma membrane-cytoskeletal linker of microvilli, was required to restrict its function to the apical membrane. Proteomic approaches and ribonucleic acid interference knockdown identified lymphocyte-oriented kinase (LOK) and SLK as the relevant kinases.
View Article and Find Full Text PDFIn response to genotoxic stress, a transient arrest in cell-cycle progression enforced by the DNA-damage checkpoint (DDC) signalling pathway positively contributes to genome maintenance. Because hyperactivated DDC signalling can lead to a persistent and detrimental cell-cycle arrest, cells must tightly regulate the activity of the kinases involved in this pathway. Despite their importance, the mechanisms for monitoring and modulating DDC signalling are not fully understood.
View Article and Find Full Text PDFThe DNA damage checkpoint kinase Mec1(ATR) is critical for maintaining the integrity of replication forks. Though it has been proposed to promote fork repair, the mechanisms by which Mec1 regulates DNA repair factors remain unclear. Here, we found that Mec1 mediates a key interaction between the fork protein Dpb11 and the DNA repair scaffolds Slx4-Rtt107 to regulate replication stress response.
View Article and Find Full Text PDF