Publications by authors named "Patrice Thuleau"

In order to develop a sustainable agriculture respecting the environment and to reduce chemical inputs, a new strategy has emerged in recent years, based on the use of products targeting plants' natural defense and growth mechanisms. In this context, a few years ago we demonstrated the existence in plants of regulatory peptides called miPEPs for "microRNA-encoded peptides". MicroRNAs (miRNAs) are small RNAs that down-regulate the expression of numerous genes in eukaryotes.

View Article and Find Full Text PDF

Primary transcripts of microRNAs (pri-miRNAs) were initially defined as long non-coding RNAs that host miRNAs further processed by the microRNA processor complex. A few years ago, however, it was discovered in plants that pri-miRNAs actually contain functional open reading frames (sORFs) that translate into small peptides called miPEPs, for microRNA-encoded peptides. Initially detected in and , recent studies have revealed the presence of miPEPs in other pri-miRNAs as well as in other species ranging from various plant species to animals.

View Article and Find Full Text PDF

The current agriculture main challenge is to maintain food production while facing multiple threats such as increasing world population, temperature increase, lack of agrochemicals due to health issues and uprising of weeds resistant to herbicides. Developing novel, alternative, and safe methods is hence of paramount importance. Here, we show that complementary peptides (cPEPs) from any gene can be designed to target specifically plant coding genes.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are transcribed as long primary transcripts (pri-miRNAs) by RNA polymerase II. Plant pri-miRNAs encode regulatory peptides called miPEPs, which specifically enhance the transcription of the pri-miRNA from which they originate. However, paradoxically, whereas miPEPs have been identified in different plant species, they are poorly conserved, raising the question of the mechanisms underlying their specificity.

View Article and Find Full Text PDF

MiPEPs are short natural peptides encoded by microRNAs in plants. Exogenous application of miPEPs increases the expression of their corresponding miRNA and, consequently, induces consistent phenotypical changes. Therefore, miPEPs carry huge potential in agronomy as gene regulators that do not require genome manipulation.

View Article and Find Full Text PDF

It is now well established that sphingoid Long Chain Bases (LCBs) are crucial mediators of programmed cell death. In plants, the mycotoxin fumonisin B1 (FB1) produced by the necrotrophic fungus Fusarium moniliforme disrupts the sphingolipid biosynthesis pathway by inhibiting the ceramide synthase leading to an increase in the amount of phytosphingosine (PHS) and dihydrosphingosine (DHS), the two major LCBs in Arabidopsis thaliana. To date, the signaling pathway involved in FB1-induced cell death remains largely uncharacterized.

View Article and Find Full Text PDF

Calcium-dependent protein kinases (CDPKs) are Ca-sensors that play pivotal roles in plant development and stress responses. They have the unique ability to directly translate intracellular Ca signals into reversible phosphorylation events of diverse substrates which can mediate interactions with 14-3-3 proteins to modulate protein functions. Recent studies have revealed roles for the coordinated action of CDPKs and 14-3-3s in regulating diverse aspects of plant biology including metabolism, development, and stress responses.

View Article and Find Full Text PDF

Sphinganine or dihydrosphingosine (d18:0, DHS), one of the most abundant free sphingoid long chain bases (LCBs) in plants, is known to induce a calcium-dependent programmed cell death (PCD) in plants. In addition, in tobacco BY-2 cells, it has been shown that DHS triggers a rapid production of HO and nitric oxide (NO). Recently, in analogy to what is known in the animal field, plant cytosolic glyceraldehyde-3-phosphate dehydrogenase (GAPC), a ubiquitous enzyme involved in glycolysis, has been suggested to fulfill other functions associated with its oxidative post-translational modifications such as S-nitrosylation on cysteine residues.

View Article and Find Full Text PDF

The Ca(2+) ion is recognized as a crucial second messenger in signaling pathways coupling the perception of environmental stimuli to plant adaptive responses. Indeed, one of the earliest events following the perception of environmental changes (temperature, salt stress, drought, pathogen, or herbivore attack) is intracellular variation of free calcium concentrations. These calcium variations differ in their spatio-temporal characteristics (subcellular location, amplitude, kinetics) with the nature and strength of the stimulus and, for this reason, they are considered as signatures encrypting information from the initial stimulus.

View Article and Find Full Text PDF

An increase in cellular calcium ion (Ca(2+)) concentration is now acknowledged to be one of the earliest events occurring during the induction of plant defence responses to a wide variety of pathogens. Sphingoid long-chain bases (LCBs) have also been recently demonstrated to be important mediators of defence-related programmed cell death during pathogen attack. Here, we present recent data highlighting how Ca(2+) and LCBs may be interconnected to regulate cellular processes which lead either to plant susceptibility or to resistance mechanisms.

View Article and Find Full Text PDF

The calcium ion is probably one of the most studied second messenger both in plant and animal fields. A large number of reviews have browsed the diversity of cytosolic calcium signatures and evaluated their pleiotropic roles in plant and animal cells. In the recent years, an increasing number of reviews has focused on nuclear calcium, especially on the possible roles of nuclear calcium concentration variations on nuclear activities.

View Article and Find Full Text PDF

Sphinganine or dihydrosphingosine (d18:0, DHS), one of the most abundant free sphingoid Long Chain Base (LCB) in plants, is known to induce a calcium dependent programmed cell death (PCD) in tobacco BY-2 cells. In addition, we have recently shown that DHS triggers a production of H2O2, via the activation of NADPH oxidase(s). However, this production of H2O2 is not correlated with the DHS-induced cell death but would rather be associated with basal cell defense mechanisms.

View Article and Find Full Text PDF

Sphinganine or dihydrosphingosine (d18:0, DHS), one of the most abundant free sphingoid Long Chain Base (LCB) in plants, has been recently shown to induce both cytosolic and nuclear calcium transient increases and a correlated Programmed Cell Death (PCD) in tobacco BY-2 cells. In this study, in order to get deeper insight into the LCB signaling pathway leading to cell death, the putative role of Reactive Oxygen Species (ROS) has been investigated. We show that DHS triggers a rapid dose-dependent production of H₂O₂ that is blocked by diphenyleniodonium (DPI), indicating the involvement of NADPH oxidase(s) in the process.

View Article and Find Full Text PDF

Calcium and Reactive Oxygen Species (ROS) are acknowledged as crucial second messengers involved in the response to various biotic and abiotic stresses. However, it is still not clear how these two compounds can play a role in different signaling pathways leading the plant to a variety of processes such as root development or defense against pathogens. Recently, it has been shown that the concept of calcium and ROS signatures, initially discovered in the cytoplasm, can also be extended to the nucleus of plant cells.

View Article and Find Full Text PDF
Article Synopsis
  • Sphingolipids play a critical role in regulating cell growth and death, with studies showing their impact on both animal and plant cells.
  • In tobacco BY-2 cells, external application of d-erythro-sphinganine (DHS) increases long chain bases (LCBs), leading to rapid and significant increases in free calcium concentrations in the cytosol and nucleus.
  • The study finds that blocking calcium entry inhibits cell death triggered by DHS, highlighting the importance of nuclear calcium in controlling programmed cell death processes in these plant cells.
View Article and Find Full Text PDF

Cadmium is suspected to exert its toxic action on cells through oxidative damage. However, the transition metal is unable to directly generate reactive oxygen species (ROS) via redox reactions with molecular oxygen in a biological environment. Here, we show that bright yellow-2 (BY-2) tobacco cells exposed to millimolar concentrations of CdCl(2) developed cell death within 2-3 h.

View Article and Find Full Text PDF

Calcium ion is a universal second messenger in numerous cell physiological processes. The paper describes the structure and the activation mechanisms of the bioluminescent (aequorin) and fluorescent based GFP calcium sensitive probes (Cameleon) and the data obtained with such probes in genetically transformed animal and vegetal organisms. The importance of these in vivo Ca2+ imaging molecules in the understanding of calcium signalling is discussed.

View Article and Find Full Text PDF