Glycerol is considered as a promising substrate for biotechnological applications and the non-conventional yeast has been used extensively for the valorization of this compound. Contrary to , seems to prefer glycerol over glucose and it has been reported previously that the presence of glycerol can suppress the consumption of glucose in co-substrate fermentations. Based on these observations, we hypothesized glycerol repression-like effects in , which are converse to well described carbon repression mechanisms ensuring the prioritized use of glucose (, in ).
View Article and Find Full Text PDFOver the last 10 to 15 years, metabolic engineering of microbes has become a versatile tool for high-level de novo synthesis of terpenoids, with the sesquiterpenoids armopha-1,4-diene, farnesene and artemisinic acid as prime examples. However, almost all cell factory approaches towards terpenoids to date have been based on sugar as the raw material, which is mainly used as a food resource and subject to high price volatilities. In this study we present de novo synthesis of the sesquiterpenoid α-humulene from the abundantly available non-food carbon source methanol by metabolically engineered Methylobacterium extorquens AM1.
View Article and Find Full Text PDFBackground: Production of monoterpenoids as valuable chemicals using recombinant microbes is a growing field of interest. Unfortunately, antimicrobial activity of most monoterpenoids hampers a wide application of microorganisms for their production. Strains of Pseudomonas putida, a fast growing and metabolically versatile bacterium, often show an outstanding high tolerance towards organic solvents and other toxic compounds.
View Article and Find Full Text PDFNovel chatechol/hydroxamate siderophores (named "fimsbactins") were identified in Acinetobacter baumannii ATCC 17978 and Acinetobacter baylyi ADP1. The major compound, fimsbactin A, was isolated from low-iron cultures of A. baylyi ADP1, and its chemical structure was elucidated by mass spectrometry, and detailed (1)H, (13)C and (15)N NMR spectroscopy.
View Article and Find Full Text PDF