The fat body in Drosophila larvae functions as a reserve tissue and participates in the regulation of organismal growth and homeostasis through its endocrine activity. To better understand its role in growth coordination, we induced fat body atrophy by knocking down several key enzymes of the glycolytic pathway in adipose cells. Our results show that impairing the last steps of glycolysis leads to a drastic drop in adipose cell size and lipid droplet content, and downregulation of the mTOR pathway and REPTOR transcriptional activity.
View Article and Find Full Text PDFThe rising global incidence of cancer makes it the second leading cause of death worldwide. Over the past decades, significant progress has been made in both basic knowledge and the discovery of new therapeutic approaches. However, the complexity of mechanisms related to tumor development requires the use of sophisticated and adapted research tools.
View Article and Find Full Text PDFExplaining the emergence and maintenance of intratumor heterogeneity is an important question in cancer biology. Tumor cells can generate considerable subclonal diversity, which influences tumor growth rate, treatment resistance, and metastasis, yet we know remarkably little about how cells from different subclones interact. Here, we confronted two murine mammary cancer cell lines to determine both the nature and mechanisms of subclonal cellular interactions .
View Article and Find Full Text PDFAggressive neoplastic growth can be initiated by a limited number of genetic alterations, such as the well-established cooperation between loss of cell architecture and hyperactive signaling pathways. However, our understanding of how these different alterations interact and influence each other remains very incomplete. Using Drosophila paradigms of imaginal wing disc epithelial growth, we have monitored the changes in Notch pathway activity according to the polarity status of cells (scrib mutant).
View Article and Find Full Text PDFUnlabelled: Hepatitis C virus (HCV) triggers innate immunity signaling in the infected cell. Replication of the viral genome is dispensable for this phenotype, and we along with others have recently shown that NS5B, the viral RNA-dependent RNA polymerase, synthesizes double-stranded RNA (dsRNA) from cellular templates, thus eliciting an inflammatory response, notably via activation of type I interferon and lymphotoxin β. Here, we investigated intracellular signal transduction pathways involved in this process.
View Article and Find Full Text PDFBy definition, a driver mutation confers a growth advantage to the cancer cell in which it occurs, while a passenger mutation does not: the former is usually considered as the engine of cancer progression, while the latter is not. Actually, the effects of a given mutation depend on the genetic background of the cell in which it appears, thus can differ in the subclones that form a tumor. In addition to cell-autonomous effects generated by the mutations, non-cell-autonomous effects shape the phenotype of a cancer cell.
View Article and Find Full Text PDFExpression of developmental genes Twist1 and Twist2 is reactivated in many human tumors. Among their oncogenic activities, induction of epithelial to mesenchymal transition is believed to increase cell motility and invasiveness and may be related to acquisition of cancer stem cell phenotype. In addition, Twist proteins promote malignant conversion by overriding two oncogene-induced failsafe programs: senescence and apoptosis.
View Article and Find Full Text PDFExposure to hepatitis C virus (HCV) typically results in chronic infection that leads to progressive liver disease ranging from mild inflammation to severe fibrosis and cirrhosis as well as primary liver cancer. HCV triggers innate immune signaling within the infected hepatocyte, a first step in mounting of the adaptive response against HCV infection. Persistent inflammation is strongly associated with liver tumorigenesis.
View Article and Find Full Text PDFSince the mid 1970s, cancer has been described as a process of Darwinian evolution, with somatic cellular selection and evolution being the fundamental processes leading to malignancy and its many manifestations (neoangiogenesis, evasion of the immune system, metastasis, and resistance to therapies). Historically, little attention has been placed on applications of evolutionary biology to understanding and controlling neoplastic progression and to prevent therapeutic failures. This is now beginning to change, and there is a growing international interest in the interface between cancer and evolutionary biology.
View Article and Find Full Text PDFBackground & Aims: Apicobasal polarity, which is essential for epithelial structure and function, is targeted by several tumour-related pathogens and is generally perturbed in the course of carcinogenesis. Hepatitis C virus (HCV) infection is associated with a strong risk of hepatocellular carcinoma, typically preceded by dysplastic alterations of cell morphology. We investigated the molecular mechanisms and the functional consequences of HCV-driven perturbations of epithelial polarity.
View Article and Find Full Text PDFUnlabelled: An unresolved question regarding the physiopathology of hepatitis C virus (HCV) infection is the remarkable efficiency with which host defenses are neutralized to establish chronic infection. Modulation of an apoptotic response is one strategy used by viruses to escape immune surveillance. We previously showed that HCV proteins down-regulate expression of BH3-only Bcl2 interacting domain (Bid) in hepatocytes of HCV transgenic mice.
View Article and Find Full Text PDFTransforming growth factor beta (TGF-beta) has a strong impact on liver development and physiopathology, exercised through its pleiotropic effects on growth, differentiation, survival, and migration. When exposed to TGF-beta, the mhAT3F cells, immortalized, highly differentiated hepatocytes, maintained their epithelial morphology and underwent dramatic alterations of adhesion, leading to partial or complete detachment from a culture plate, followed by readhesion and spreading. These alterations of adhesive behavior were caused by sequential changes in expression of the alpha5beta1 integrin and of its ligand, the fibronectin.
View Article and Find Full Text PDFThe tumor suppressor protein p53 is ubiquitously expressed as a major isoform of 53 kD, but several forms of lower molecular weight have been observed. Here, we describe a new isoform, DeltaN-p53, produced by internal initiation of translation at codon 40 and lacking the N-terminal first transactivation domain. This isoform has impaired transcriptional activation capacity, and does not complex with the p53 regulatory protein Mdm2.
View Article and Find Full Text PDFRNA interference (RNAi) is a process of sequence-specific gene silencing. Recent advances in the understanding of RNAi have provided practical tools to silence gene expression in mammalian cells, opening new possibilities for studying the functions of genes and proteins. It is important to ensure that an observed effect of RNAi is due to silencing of the intended target.
View Article and Find Full Text PDFA current view is that cytotoxic stress, such as DNA damage, induces apoptosis by regulating the permeability of mitochondria. Mitochondria sequester several proteins that, if released, kill by activating caspases, the proteases that disassemble the cell. Cytokines activate caspases in a different way, by assembling receptor complexes that activate caspases directly; in this case, the subsequent mitochondrial permeabilization accelerates cell disassembly by amplifying caspase activity.
View Article and Find Full Text PDF