Publications by authors named "Patrice J Morin"

PAX8 is a master transcription factor that is essential during embryogenesis and promotes neoplastic growth. It is expressed by the secretory cells lining the female reproductive tract, and its deletion during development results in atresia of reproductive tract organs. Nearly all ovarian carcinomas express PAX8, and its knockdown results in apoptosis of ovarian cancer cells.

View Article and Find Full Text PDF

Paired Box 8 (PAX8) is a lineage-specific transcription factor that has essential roles during embryogenesis and tumorigenesis. The importance of PAX8 in the development of the reproductive system is highlighted by abnormalities observed upon the loss or mutation of this PAX family member. In cancer, PAX8 expression is deregulated in a key set of neoplasms, including those arising from the Müllerian ducts.

View Article and Find Full Text PDF

Epithelial ovarian cancer (EOC), the deadliest of gynaecological cancers, is a disease that remains difficult to detect early and treat efficiently. A significant challenge for researchers in the field is that the aetiology of EOC and the molecular pathways important for its development are poorly understood. Moreover, precursor lesions have not been readily identifiable, making the mechanisms of EOC progression difficult to delineate.

View Article and Find Full Text PDF

Recent evidence suggests that ovarian high-grade serous carcinoma (HGSC) originates from the epithelium of the fallopian tube. However, most mouse models are based on the previous prevailing view that ovarian cancer develops from the transformation of the ovarian surface epithelium. Here, we report the extensive histological and molecular characterization of the mogp-TAg transgenic mouse, which expresses the SV40 large T-antigen (TAg) under the control of the mouse müllerian-specific Ovgp-1 promoter.

View Article and Find Full Text PDF

Several members of the let-7 microRNA family are downregulated in ovarian and other cancers. They are thought to act as tumor suppressors by lowering growth-promoting and anti-apoptotic proteins. In order to measure cellular let-7 levels systematically, we have developed a highly sensitive let-7 reporter assay system based on the expression of a chimeric mRNA that contains the luciferase coding region and a 3'-untranslated region (UTR) bearing two let-7-binding sites.

View Article and Find Full Text PDF

Epidemiological studies have shown that the regular use of non-steroidal anti-inflammatory (NSAIDs) drugs is associated with a reduced risk of various cancers. In addition, in vitro and experiments in mouse models have demonstrated that NSAIDs decrease tumor initiation and/or progression of several cancers. However, there are limited preclinical studies investigating the effects of NSAIDs in ovarian cancer.

View Article and Find Full Text PDF

Introduction: Although a high frequency of androgen receptor (AR) expression in human breast cancers has been described, exploiting this knowledge for therapy has been challenging. This is in part because androgens can either inhibit or stimulate cell proliferation in pre-clinical models of breast cancer. In addition, many breast cancers co-express other steroid hormone receptors that can affect AR signaling, further obfuscating the effects of androgens on breast cancer cells.

View Article and Find Full Text PDF

Background: Resistance to current chemotherapeutic agents is a major cause of therapy failure in ovarian cancer patients, but the exact mechanisms leading to the development of drug resistance remain unclear.

Methods: To better understand mechanisms of drug resistance, and possibly identify novel targets for therapy, we generated a series of drug resistant ovarian cancer cell lines through repeated exposure to three chemotherapeutic drugs (cisplatin, doxorubicin, or paclitaxel), and identified changes in gene expression patterns using Illumina whole-genome expression microarrays. Validation of selected genes was performed by RT-PCR and immunoblotting.

View Article and Find Full Text PDF

Background: Claudins are tight junction proteins that are involved in tight junction formation and function. Previous studies have shown that claudin-7 is frequently upregulated in epithelial ovarian cancer (EOC) along with claudin-3 and claudin-4. Here, we investigate in detail the expression patterns of claudin-7, as well as its possible functions in EOC.

View Article and Find Full Text PDF

We have previously shown that Wnt5A-mediated signaling can promote melanoma metastasis. It has been shown that Wnt signaling is antagonized by the protein Klotho, which has been implicated in aging. We show here that in melanoma cells, expressions of Wnt5A and Klotho are inversely correlated.

View Article and Find Full Text PDF

The beneficial effects of caloric restriction in increasing longevity and forestalling age-related diseases are well known. Dietary restriction of methionine also renders similar benefits. We recently showed in a renal epithelial cell culture system that reduction of culture medium methionine by 80% resulted in altered tight junctional (TJ) claudin composition and also improved epithelial barrier function (51).

View Article and Find Full Text PDF

Age-associated thymic involution is characterized by decreased thymopoiesis, adipocyte deposition and changes in the expression of various thymic microenvironmental factors. In this work, we characterized the distribution of fat-storing cells within the aging thymus. We found an increase of unilocular adipocytes, ERTR7(+) and CCR5(+ )fat-storing multilocular cells in the thymic septa and parenchymal regions, thus suggesting that mesenchymal cells could be immigrating and differentiating in the aging thymus.

View Article and Find Full Text PDF

Background: Claudins are membrane proteins that play critical roles in tight junction (TJ) formation and function. Members of the claudin gene family have been demonstrated to be aberrantly regulated, and to participate in the pathogenesis of various human cancers. In the present study, we report that claudin-11 (CLDN11) is silenced in gastric cancer via hypermethylation of its promoter region.

View Article and Find Full Text PDF

The molecular mechanisms involved in epithelial ovarian cancer initiation and progression are just beginning to be elucidated. In particular, it has become evident that microRNAs (miRNAs or miRs), a class of molecules that post-transcriptionally regulate gene expression, play a major role in ovarian tumorigenesis. Several microRNA profiling studies have identified changes in microRNA patterns that take place during ovarian cancer development.

View Article and Find Full Text PDF

The claudin multigene family encodes tetraspan membrane proteins that are crucial structural and functional components of tight junctions, which have important roles in regulating paracellular permeability and maintaining cell polarity in epithelial and endothelial cell sheets. In mammals, the claudin family consists of 24 members, which exhibit complex tissue-specific patterns of expression. The extracellular loops of claudins from adjacent cells interact with each other to seal the cellular sheet and regulate paracellular transport between the luminal and basolateral spaces.

View Article and Find Full Text PDF

Tight junctions (TJs) play crucial roles in tissue homeostasis and inflammation through their roles in the control of paracellular transport and barrier function. There is evidence that these functions are compromised in older organisms, but the exact mechanisms leading to TJ deterioration are not well understood. Claudin proteins are a family of membrane proteins that constitute the structural barrier elements of TJs and therefore play a major role in their formation and function.

View Article and Find Full Text PDF

Claudin proteins are frequently overexpressed in various tumors such as breast, prostate and ovarian cancer. While their functions in cancer have not been completely elucidated, roles in survival, adhesion and invasion have been suggested. In order to clarify the roles of claudins in ovarian cancer, we have performed gene expression profiling of ovarian surface epithelial cells overexpressing claudin-4 and compared the expression patterns to the parental, non-expressing cells.

View Article and Find Full Text PDF

Background: The absence of highly sensitive and specific serum biomarkers makes mass screening for ovarian cancer impossible. The claudin proteins are frequently overexpressed in ovarian cancers, but their potential as prognostic, diagnostic, or detection markers remains unclear. Here, we have explored the possible use of these proteins as screening biomarkers for ovarian cancer detection.

View Article and Find Full Text PDF

Background: Endometriosis is a clinical condition that affects up to 10% of the women of reproductive age. Endometriosis is characterized by the presence of endometrial tissues outside the uterine cavity and can lead to chronic pelvic pain, infertility and, in some cases, to ovarian cancer.

Methods: In order to better understand the pathogenesis of endometriosis, we have used Serial Analysis of Gene Expression (SAGE) to identify genes differentially in this disease by studying three endometriotic tissues and a normal endometrium sample.

View Article and Find Full Text PDF

Notch3 gene amplification and pathway activation have been reported in ovarian serous carcinoma. However, the primary Notch3 ligand that initiates signal transduction in ovarian cancer remains unclear. In this report, we identify Jagged-1 as the highest expressed Notch ligand in ovarian tumor cells as well as in peritoneal mesothelial cells that are in direct contact with disseminated ovarian cancer cells.

View Article and Find Full Text PDF

Background: MicroRNAs (miRNAs) represent a class of small non-coding RNAs that control gene expression by targeting mRNAs and triggering either translation repression or RNA degradation. Emerging evidence suggests the potential involvement of altered regulation of miRNA in the pathogenesis of cancers, and these genes are thought to function as both tumor suppressors and oncogenes.

Methodology/principal Findings: Using microRNA microarrays, we identify several miRNAs aberrantly expressed in human ovarian cancer tissues and cell lines.

View Article and Find Full Text PDF

Objective: Tight junction (TJ) proteins claudin-3 and claudin-4 may be differentially expressed in uterine serous papillary carcinoma (USPC), a rare form of endometrial cancer characterized by a particularly poor prognosis. Our aim was to determine the expression pattern and prognostic relevance of claudin-3 and claudin-4 in a large cohort of endometrial cancer patients of diverse histological type and stage.

Methods: Claudin-3 and claudin-4 expression was studied in a cohort of 287 patients with endometrial cancer including 137 cases of USPC or clear-cell histology using immunohistochemistry.

View Article and Find Full Text PDF

Members of the claudin family of tight junction proteins have been found altered in several malignancies, including ovarian cancer. Because claudin-3 and -4 are elevated in the vast majority of ovarian tumors, they may represent useful biomarkers for detection and prognosis, as well as ideal targets for therapy using the Clostridium perfringens enterotoxin.

View Article and Find Full Text PDF