A new theoretical framework that enables the use of differential dynamic microscopy (DDM) in fluorescence imaging mode to quantify in situ protein adsorption onto nanoparticles (NP) while simultaneously monitoring for NP aggregation is proposed. This methodology is used to elucidate the thermodynamic and kinetic properties of the protein corona (PC) in vitro and in vivo. The results show that protein adsorption triggers particle aggregation over a wide concentration range and that the formed aggregate structures can be quantified using the proposed methodology.
View Article and Find Full Text PDFPolymer nanoparticles (NPs) are extensively studied as drug delivery systems for various therapeutic indications, including drug and imaging agent delivery to the brain. Despite intensive research, their toxicological profile has yet to be fully characterized. In particular, the more subtle effects of nanomaterials on inflammatory processes have scarcely been investigated.
View Article and Find Full Text PDFThis Review aims to provide a systematic analysis of the literature regarding ongoing debates in protein corona research. Our goal is to portray the current understanding of two fundamental and debated characteristics of the protein corona, namely, the formation of mono- or multilayers of proteins and their binding (ir)reversibility. The statistical analysis we perform reveals that these characterisitics are strongly correlated to some physicochemical factors of the NP-protein system (particle size, bulk material, protein type), whereas the technique of investigation or the type of measurement ( or ) do not impact the results, unlike commonly assumed.
View Article and Find Full Text PDFImproving nanoparticles (NPs) transport across biological barriers is a significant challenge that could be addressed through understanding NPs diffusion in dense and confined media. Here, we report the ability of soft NPs to shrink in confined environments, therefore boosting their diffusion compared to hard, non-deformable particles. We demonstrate this behavior by embedding microgel NPs in agarose gels.
View Article and Find Full Text PDFCystic fibrosis (CF) patients are faced with chronic bacterial infections displaying persistent resistance if not eradicated during the first stage of the disease. Nanoantibiotics for pulmonary administration, such as liposomal ciprofloxacin or amikacin, have progressed through clinics thanks to their sustained release, prolonged lung residence time, and low systemic absorption. In this work, we sought a nanoformulation of levofloxacin for the treatment of Pseudomonas aeruginosa.
View Article and Find Full Text PDFWe present a systematic study of the role of poly(ethylene glycol) (PEG) content in NPs on drug skin absorption. Cholecalciferol-loaded NPs of 100 nm of diameter were prepared by flash nanoprecipitation from PLA-b-PEG copolymers of various PEG lengths. As PEG content increased in the polymer, we observed a transition from a frozen solid particle structure to a more dynamic particle structure.
View Article and Find Full Text PDFDiblock PLA-PEG nanoparticles were produced to establish the role of PEG chain length on brain vascular endothelial cell transcytosis. 100-nm nanoparticles tagged with fluorescent pyrene butanol and coated with PEG chains (Mw: 1-10 kDa), at similar PEG surface density, were used to study endocytosis and transcytosis phenomena on mouse vascular endothelial cell monolayers. The transport mechanisms were then investigated through inhibitory processes.
View Article and Find Full Text PDFDrug nanocarriers' surface chemistry is often presumed to be uniform. For instance, the polymer surface coverage and distribution of ligands on nanoparticles are described with averaged values obtained from quantification techniques based on particle populations. However, these averaged values may conceal heterogeneities at different levels, either because of the presence of particle sub-populations or because of surface inhomogeneities, such as patchy surfaces on individual particles.
View Article and Find Full Text PDF-4,4'-(Diazenediyl)bis(2,3,5,6-tetrafluorobenzoic acid), CHFNO, and its ethanol disolvate, CHFNO·2CHOH, represent new examples of self-stabilized -configured azo-benzenes obtained by a common crystallization procedure at room temperature under normal laboratory lighting conditions. The target structure constitutes of two 2,3,5,6-tetra-fluoro-benzoic acid residues linked to each other by a -configured azo group and was confirmed for two isolated specimens extracted from the same sample, corresponding to a solvent-free form and an ethanol disolvate. In the solvent-free form, the mol-ecule is characterized by rotational symmetry around a twofold rotation axis bis-ecting its central N=N bond while this symmetry is not present in the solvated form.
View Article and Find Full Text PDFWe investigated the influence of nanoparticle (NP) surface composition on different aspects of skin delivery of a lipophilic drug: chemical stability, release and skin penetration. Cholecalciferol was chosen as a labile model drug. Poly(lactic acid) (PLA)-based NPs without surface coating, with a non-ionic poly(ethylene glycol) (PEG) coating, or with a zwitterionic poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) coating were prepared using flash nanoprecipitation.
View Article and Find Full Text PDFActa Crystallogr E Crystallogr Commun
April 2018
In the title compound, CHNO, the plane of the pyrrolidone ring is inclined at an angle of 59.791 (2)° to that of the azo-benzene segment, which adopts a configuration close to planar. In the crystal, mol-ecules are oriented pairwise by (2-oxopyrrolidin-3-yl)-oxy moieties at an angle of 76.
View Article and Find Full Text PDFOur work aimed at evaluating the use of permeability glycoprotein (P-gp) inhibiting nanoparticles (NPs) as a part of a suitable oral solid dosage to improve bioavailability. Famotidine (Pepcid), a stomach acid production inhibitor, was used as a drug model to test our hypothesis. Famotidine-loaded NPs were prepared by solvent emulsion evaporation using PEG grafted on a polylactide acid (PLA) polymer backbone (PLA-g-PEG), with a 5% molar ratio of PEG versus lactic acid monomer and PEG of either 750 or 2000 Da molecular weight.
View Article and Find Full Text PDFDuring the last three decades, dendrimers, nano-sized highly-branched fractal-like symmetrical macromolecules, have been intensively studied as promising candidates for application as drug-delivery carriers. Among other important characteristics arising from their unique and highly-controlled architecture, size and surface properties, the possibility of hosting guest molecules in internal voids represents a key advantage underlying the potential of dendrimers as non-covalent drug-encapsulating agents. The impressive amount of accumulating experimental results to date allows researchers to identify the most important and promising theoretical and practical aspects of the use of dendrimers for this purpose.
View Article and Find Full Text PDFActa Crystallogr E Crystallogr Commun
July 2017
The number of known asymmetrically substituted hemilactides, important precursors for obtaining regular derivatives of polylactide polymers, is still limited and structural characterization of most of them is incomplete. In the title racemic 1,4-dioxane-2,5-dione derivative, CHO, the hemilactide heterocycle exhibits a twist-boat conformation. The bulkier propynyloxymethyl group is in an axial position with a conformation for the CH-O-CH-C segment.
View Article and Find Full Text PDFBioavailability of oral drugs can be limited by an intestinal excretion process mediated by P-glycoprotein (P-gp). Polyethylene glycol (PEG) is a known P-gp inhibitor. Dispersion of Famotidine (a P-gp substrate) within PEGylated nanoparticles (NPs) was used to improve its oral bioavailability.
View Article and Find Full Text PDFWe developed a nanoparticles (NPs) library from poly(ethylene glycol)-poly lactic acid comb-like polymers with variable amount of PEG. Curcumin was encapsulated in the NPs with a view to develop a delivery platform to treat diseases involving oxidative stress affecting the CNS. We observed a sharp decrease in size between 15 and 20% w/w of PEG which corresponds to a transition from a large solid particle structure to a "micelle-like" or "polymer nano-aggregate" structure.
View Article and Find Full Text PDFPolymers made of poly(ethylene glycol) chains grafted to poly(lactic acid) chains (PEG-g-PLA) were used to produce stealth drug nanocarriers. A library of comblike PEG-g-PLA polymers with different PEG grafting densities was prepared in order to obtain nanocarriers with dense PEG brushes at their surface, stability in suspension, and resistance to protein adsorption. The structural properties of nanoparticles (NPs) produced from these polymers by a surfactant-free method were assessed by dynamic light scattering, ζ potential, and transmission electron microscopy and found to be controlled by the amount of PEG present in the polymers.
View Article and Find Full Text PDFInjectable drug nanocarriers have greatly benefited in their clinical development from the addition of a superficial hydrophilic corona to improve their cargo pharmacokinetics. The most studied and used polymer for this purpose is poly(ethylene glycol), PEG. However, in spite of its wide use for over two decades now, there is no general consensus on the optimum PEG chain coverage-density and size required to escape from the mononuclear phagocyte system and to extend the circulation time.
View Article and Find Full Text PDFJ Pharm Pharm Sci
September 2014
Purpose: The purpose of this study was to develop an artificial neural network (ANN) model to predict drug removal during dialysis based on drug properties and dialysis conditions. Nine antihypertensive drugs were chosen as model for this study.
Methods: Drugs were dissolved in a physiologic buffer and dialysed in vitro in different dialysis conditions (UFRmin/UFRmax, with/without BSA).
Purpose: In order to update our data on drug dialyzability using the high-permeability dialysis membranes, atenolol elimination by an in vitro dialysis model was compared to that observed in six patients during high-permeability hemodialysis (HD), and the predictive value of the model was evaluated.
Methods: Atenolol clearance was evaluated in six patients undergoing chronic HD. They were considered as eligible candidates if they were between 18 and 80 years of age, had a body mass index between 19 and 30 kg/m2, underwent HD and were taking atenolol on a regular basis in oral tablet form for at least 1 month before the study started.
Itraconazole is a drug of choice for the treatment of severe fungal infections and parasitic diseases, but its use is limited by its low water solubility and varying bioavailability. New self-emulsifying drug delivery systems (SEDDS) based on PEGylated bile acids (BA-PEGs) were designed and prepared, where the number and length of PEG arms were varied to optimize the loading of itraconazole in the final drug formulation. The use of both BA-PEGs and oleic acid improved the solubilization and absorption of the drug, which was in a glassy state in the SEDDS prepared with the melting method.
View Article and Find Full Text PDFJ Microencapsul
September 2013
Poly(ethylene glycol)/polylactic acid (PEG/PLA) nanoparticles (NPs) containing the hydrophobic antifungal itraconazole (ITZ) were developed to provide a controlled release pattern of ITZ as well as to improve its aqueous dispersibility and hence enhance its antifungal action. Two PEG/PLA copolymers (PEGylated PLA polymers) were used in this study; branched PEGylated polymer in which PEG was grafted on PLA backbone at 7% (mol/mol of lactic acid monomer), PEG7%-g-PLA, and multiblock copolymer of PLA and PEG, (PLA-PEG-PLA)n with nearly similar PEG insertion ratio and similar PEG chain length. ITZ-loaded PLA NPs were also prepared and included in this study as a control.
View Article and Find Full Text PDFAm J Health Syst Pharm
November 2011
Purpose: The quality attributes of extemporaneous delayed-release liquid formulations of lansoprazole for oral administration were evaluated.
Methods: A novel liquid formulation (3 mg/mL) of Prevacid FasTab in an Ora-Blend vehicle was prepared and compared with the Prevacid FasTab 30 mg and Prevacid-sodium bicarbonate 1 M formulation (3 mg/mL). The latter formulation was combined with hydrochloric acid 0.
In our previous study, PEG-g-PLA nanoparticles were developed and characterized. The aim of the present work is to investigate the effect of PEG grafting density (% PEG inserted onto poly(d, l)-lactide, PLA backbone) on both physicochemical and biological properties (mainly plasma protein binding and in vitro macrophage uptake) of PEG-g-PLA NPs. Rhodamine B (RHO) loaded NPs were prepared from a 1:1 (wt/wt) blend of PLA and PEG-g-PLA copolymer of varying PEG grafting density (1, 7, or 20% mol/mol of lactic acid monomer) by an o/w emulsion solvent evaporation method.
View Article and Find Full Text PDF