Publications by authors named "Patrice Brassard"

The brain is highly innervated by sympathetic nerve fibres; however, their physiological purpose is poorly understood. We hypothesized that unilateral cerebral norepinephrine (NE) spillover, an index of cerebral sympathetic nerve activity (SNA), would be elevated when engaging the baroreflex [via lower-body negative pressure (LBNP; -20 and -40 Torr)] and respiratory chemoreflexes [via carbon dioxide (CO) administration (+8 Torr)], independently, and in combination. Twelve young and healthy participants (5 females) underwent simultaneous blood sampling from the right radial artery and internal jugular vein.

View Article and Find Full Text PDF

Background: Little is known regarding long-term consequences (≥5 years) of sport-related concussion (SRC) sustained during adolescence. Adolescent SRC has been linked to athlete considerations of sport participation and subsequent retirement from sport during this critical developmental period. Prolonged SRC symptoms can reduce ability to perform physical activity, and research suggests inactivity can extend years post-injury.

View Article and Find Full Text PDF
Article Synopsis
  • * Understanding and quantifying CA under various conditions is vital for clinical decision-making, especially when CA is impaired, and this often involves modeling the relationship between CPP and CBF.
  • * The paper discusses the advantages of time-domain methods over Transfer Function Analysis (TFA) for studying CA, emphasizing their flexibility and ability to handle measurement noise and incorporate complex dynamic behaviors.
View Article and Find Full Text PDF

Numerous driven techniques have been utilized to assess dynamic cerebral autoregulation (dCA) in healthy and clinical populations. The current review aimed to amalgamate this literature and provide recommendations to create greater standardization for future research. The PubMed database was searched with inclusion criteria consisting of original research articles using driven dCA assessments in humans.

View Article and Find Full Text PDF

A directional sensitivity of the cerebral pressure-flow relationship has been described using repeated squat-stands. Oscillatory lower body negative pressure (OLBNP) is a reproducible method to characterize dynamic cerebral autoregulation (dCA). It could represent a safer method to examine the directional sensitivity of the cerebral pressure-flow relationship within clinical populations and/or during pharmaceutical administration.

View Article and Find Full Text PDF

The impact of physiological stressors on cerebral sympathetic nervous activity (SNA) remains controversial. We hypothesized that cerebral noradrenaline (NA) spillover, an index of cerebral SNA, would not change during both submaximal isometric handgrip (HG) exercise followed by a post-exercise circulatory occlusion (PECO), and supine dynamic cycling exercise. Twelve healthy participants (5 females) underwent simultaneous blood sampling from the right radial artery and right internal jugular vein.

View Article and Find Full Text PDF

Background: The relationship between dynamic cerebral autoregulation (dCA) and functional outcome after acute ischemic stroke (AIS) is unclear. Previous studies are limited by small sample sizes and heterogeneity.

Methods: We performed a 1-stage individual patient data meta-analysis to investigate associations between dCA and functional outcome after AIS.

View Article and Find Full Text PDF

A given dose of hypoxia causes a greater increase in pulmonary ventilation during physical exercise than during rest, representing an exercise-induced potentiation of the acute hypoxic ventilatory response (HVR). This phenomenon occurs independently from hypoxic blood entering the contracting skeletal muscle circulation or metabolic byproducts leaving skeletal muscles, supporting the contention that neural mechanisms per se can mediate the HVR when humoral mechanisms are not at play. However, multiple neural mechanisms might be interacting intricately.

View Article and Find Full Text PDF

Fluctuating arterial blood pressure during high-intensity interval exercise (HIIE) may challenge dynamic cerebral autoregulation (dCA), specifically after stroke after an injury to the cerebrovasculature. We hypothesized that dCA would be attenuated at rest and during a sit-to-stand transition immediately after and 30 min after HIIE in individuals poststroke compared with age- and sex-matched control subjects (CON). HIIE switched every minute between 70% and 10% estimated maximal watts for 10 min.

View Article and Find Full Text PDF

Background: Sport-related concussions are a complex injury requiring multifaceted assessment, including physical exertion. Currently, concussion testing relies primarily on a treadmill-based protocol for assessing exertion-related symptoms in persons after concussion. This study compared a modified cycle protocol (Calgary Concussion Cycle Test [CCCT]) with the clinically adopted standard, the Buffalo Concussion Treadmill Test (BCTT), across multiple physiological parameters.

View Article and Find Full Text PDF

Purpose: Patients with dysautonomia often experience symptoms such as dizziness, syncope, blurred vision and brain fog. Dynamic cerebral autoregulation, or the ability of the cerebrovasculature to react to transient changes in arterial blood pressure, could be associated with these symptoms.

Methods: In this narrative review, we go beyond the classical view of cerebral autoregulation to discuss dynamic cerebral autoregulation, focusing on recent advances pitfalls and future directions.

View Article and Find Full Text PDF

Moderate-intensity aerobic exercise increases cerebral blood velocity (CBv) primarily due to hyperpnea-induced vasodilation; however, the integrative control of cerebral blood flow (CBF) allows other factors to contribute to the vasodilation. Although lower body negative pressure (LBNP) can reduce CBv, the exact LBNP intensity required to blunt the aforementioned exercise-induced CBv response is unknown. This could hold utility for concussion recovery, allowing individuals to exercise at higher intensities without symptom exacerbation.

View Article and Find Full Text PDF

Objective: We aimed to compare maternal and fetal cardiovascular responses to an acute bout of high-intensity interval training (HIIT) versus moderate-intensity continuous training (MICT) during pregnancy.

Methods: Fifteen women with a singleton pregnancy (27.3 ± 3.

View Article and Find Full Text PDF

The cerebrovascular response to incremental aerobic exercise is comparable between males and females. Whether this response can be found in moderately trained athletes remains unknown. We aimed to examine the effect of sex on the cerebrovascular response to incremental aerobic exercise until volitional exhaustion in this population.

View Article and Find Full Text PDF

Stroke is a pathophysiological condition which results in alterations in cerebral blood flow (CBF). The mechanism by which the brain maintains adequate CBF in presence of fluctuating cerebral perfusion pressure (CPP) is known as cerebral autoregulation (CA). Disturbances in CA may be influenced by a number of physiological pathways including the autonomic nervous system (ANS).

View Article and Find Full Text PDF

End-stage kidney disease (ESKD) is associated with increased arterial stiffness and cognitive impairment. Cognitive decline is accelerated in ESKD patients on hemodialysis and may result from repeatedly inappropriate cerebral blood flow (CBF). The aim of this study was to examine the acute effect of hemodialysis on pulsatile components of CBF and their relation to acute changes in arterial stiffness.

View Article and Find Full Text PDF

An inaugural workshop supported by "The Leo and Anne Albert Charitable Trust," was held October 4-7, 2019 in Scottsdale, Arizona, to focus on the effects of exercise on the brain and to discuss how physical activity may prevent or delay the onset of aging-related neurodegenerative conditions. The Scientific Program Committee (led by Dr. Jeff Burns) assembled translational, clinical, and basic scientists who research various aspects of the effects of exercise on the body and brain, with the overall goal of gaining a better understanding as to how to delay or prevent neurodegenerative diseases.

View Article and Find Full Text PDF

Regional cerebral oxygen saturation (rS o2 ) obtained from near-infrared spectroscopy (NIRS) provides valuable information during cardiac surgery. The rS o2 is calculated from the proportion of oxygenated to total hemoglobin in the cerebral vasculature. Root O3 cerebral oximetry (Masimo) allows for individual identification of changes in total (ΔcHbi), oxygenated (Δ o2 Hbi), and deoxygenated (ΔHHbi) hemoglobin spectral absorptions.

View Article and Find Full Text PDF

Cerebral autoregulation (CA) refers to the control of cerebral tissue blood flow (CBF) in response to changes in perfusion pressure. Due to the challenges of measuring intracranial pressure, CA is often described as the relationship between mean arterial pressure (MAP) and CBF. Dynamic CA (dCA) can be assessed using multiple techniques, with transfer function analysis (TFA) being the most common.

View Article and Find Full Text PDF

Cerebral hemodynamics, e.g., cerebral blood flow, can be measured and quantified using many different methods, with transcranial Doppler ultrasound (TCD) being one of the most commonly used approaches.

View Article and Find Full Text PDF

We previously reported subtle dynamic cerebral autoregulation (dCA) alterations following 6 weeks of high-intensity interval training (HIIT) to exhaustion using transfer function analysis (TFA) on forced mean arterial pressure (MAP) oscillations in young endurance-trained men. However, accumulating evidence suggests the cerebrovasculature better buffers cerebral blood flow changes when MAP acutely increases compared to when MAP acutely decreases. Whether HIIT affects the directional sensitivity of the cerebral pressure-flow relationship in these athletes is unknown.

View Article and Find Full Text PDF