Chronic distress-induced hypothalamic-pituitary-adrenal axis deregulations have been associated with the development of neuropsychiatric disorders such as anxiety and depression. Currently available drugs treating such pathological conditions have limited efficacy and diverse side effects, revealing the need of new safer strategies. Aromatic plant-based compounds are largely used in herbal medicine due to their therapeutic properties on mood, physiology, and general well-being.
View Article and Find Full Text PDFNon-invasive neuromodulatory techniques, including transcranial direct current stimulation (tDCS), have been shown to modulate neuronal function and are used both in cognitive neuroscience and to treat neuropsychiatric conditions. In this context, animal models provide a powerful tool to identify the neurobiological mechanisms of action of tDCS. However, finding a current generator that is easily usable and which allows a wide range of stimulation parameters can be difficult and/or expensive.
View Article and Find Full Text PDFBackground: Emotional dysregulation and impaired attachment are potential contributors to the development of psychopathology in adolescence. This raises the question of whether oxytocin (OT), the paradigmatic "attachment hormone," may be beneficial in such contexts. Recent evidence suggests that intranasal administration of OT increases affiliative behavior, including trust and empathy.
View Article and Find Full Text PDFEmotion regulation is defined as an important mechanism for human adaptation. fMRI studies have recently highlighted its neural bases but most research uses visual stimulation to induce emotion, none of them using odorant stimulations. Nevertheless, olfaction is intimately linked to emotional processes, sharing some same neural bases and thus constitutes a valuable emotion-inducer in experimental conditions.
View Article and Find Full Text PDFTranscranial direct current stimulation (tDCS) is a non-invasive method to modulate cortical excitability. This technique is a promising emerging tool to treat several neuropathologies, including addiction. We have previously shown in mice that repeated tDCS normalizes pathological behaviors associated with chronic nicotine exposure.
View Article and Find Full Text PDFFor most olfactometers described in the literature, adjusting olfactory stimulation intensity involves modifying the dilution of the odorant in a neutral solution (water, mineral, oil, etc.), the dilution of the odorant air in neutral airflow, or the surface of the odorant in contact with airflow. But, for most of these above-mentioned devices, manual intervention is necessary for adjusting concentration.
View Article and Find Full Text PDFAlthough the cerebral networks involved in sensory perception are of general interest in neuroscience, registration of the effects of olfactory stimulation, especially in a magnetic resonance imaging (MRI) environment, presents particular problems and constraints. This article presents details of a reliable and portable system for olfactory stimulation that is modular in design and based on microcontroller technology. It has the following characteristics: (1) It is under software control; (2) the presentation of olfactory stimulation can be synchronized with respiration; (3) it can be manually controlled; and (4) it is fully compatible with an MRI environment.
View Article and Find Full Text PDF