Unlabelled: Rationally targeted therapies have transformed cancer treatment, but many patients develop resistance through bypass signaling pathway activation. PF-07284892 (ARRY-558) is an allosteric SHP2 inhibitor designed to overcome bypass-signaling-mediated resistance when combined with inhibitors of various oncogenic drivers. Activity in this setting was confirmed in diverse tumor models.
View Article and Find Full Text PDFWhat Is This Plain Language Summary About?: This summary explains the results of a long-term extension study on the effects of a specific medicine. A long-term extension study allows people who have already completed a research study to continue taking treatment. Researchers can then look at how a treatment works over a long period of time.
View Article and Find Full Text PDFWhat Is This Plain Language Summary About?: This plain language summary describes the results of a study looking at the effects of a medicine called ARRY-371797 (also known as PF-07265803) in people with dilated cardiomyopathy (DCM for short) caused by a faulty gene. This condition is called LMNA-related DCM. DCM happens when the heart becomes bigger and weaker than normal, impacting functional capacity and leading to symptoms of heart failure.
View Article and Find Full Text PDFDilated cardiomyopathy associated with lamin A/C (LMNA) gene variants (LMNA-related dilated cardiomyopathy [DCM]) is a life-threatening condition with a high unmet need, accounting for approximately 6% of idiopathic DCM cases. Currently, no disease-specific treatments target the underlying disease mechanism. ARRY-371797 (PF-07265803), a potent, selective, oral, small-molecule inhibitor of the p38α mitogen-activated protein kinase pathway, improved 6-minute walk test (6MWT) distance in 12 patients with symptomatic LMNA-related DCM in a 48-week, open-label, phase 2 study.
View Article and Find Full Text PDFGlucose flux through glucokinase (GK) controls insulin release from the pancreas in response to high levels of glucose. Flux through GK is also responsible for reducing hepatic glucose output. Since many individuals with type 2 diabetes appear to have an inadequacy or defect in one or both of these processes, identifying compounds that can activate GK could provide a therapeutic benefit.
View Article and Find Full Text PDFGlucose flux through glucokinase (GK) controls insulin release from the pancreas in response to high glucose concentrations. Glucose flux through GK also contributes to reducing hepatic glucose output. Because many individuals with type 2 diabetes appear to have an inadequacy or defect in one or both of these processes, compounds that can activate GK may serve as effective treatments for type 2 diabetes.
View Article and Find Full Text PDFObjective: To determine whether inhibition of p38 mitogen-activated protein kinase (p38MAPK) reduces the pathogenicity of anti-neutrophil cytoplasmic autoantibodies (ANCAs) in vitro and in vivo.
Methods: The effects of the p38MAPK-specific inhibitor AR-447 were studied in vitro using neutrophil respiratory burst and degranulation assays, and in lipopolysaccharide (LPS)-stimulated human glomerular endothelial cells. In vivo, p38MAPK inhibition was investigated in a mouse anti-myeloperoxidase (MPO) IgG/LPS glomerulonephritis model.
Purpose: The Ras-Raf-mitogen-activated protein kinase kinase (MEK) pathway is overactive in many human cancers and is thus a target for novel therapeutics. We have developed a highly potent and selective inhibitor of MEK1/2. The purpose of these studies has been to show the biological efficacy of ARRY-142886 (AZD6244) in enzymatic, cellular, and animal models.
View Article and Find Full Text PDF