Publications by authors named "Patric Muggli"

The hosing instability poses a feasibility risk for plasma-based accelerator concepts. We show that the growth rate for beam hosing in the linear regime (which is relevant for concepts that use a long driver) is a function of the centroid perturbation wavelength. We demonstrate how this property can be used to damp centroid oscillations by detuning the plasma response sufficiently early in the development of the instability.

View Article and Find Full Text PDF

A plasma-wakefield experiment is presented where two 60 MeV subpicosecond electron bunches are sent into a plasma produced by a capillary discharge. Both bunches are shorter than the plasma wavelength, and the phase of the second bunch relative to the plasma wave is adjusted by tuning the plasma density. It is shown that the second bunch experiences a 150 MeV/m loaded accelerating gradient in the wakefield driven by the first bunch.

View Article and Find Full Text PDF

The energy frontier of particle physics is several trillion electron volts, but colliders capable of reaching this regime (such as the Large Hadron Collider and the International Linear Collider) are costly and time-consuming to build; it is therefore important to explore new methods of accelerating particles to high energies. Plasma-based accelerators are particularly attractive because they are capable of producing accelerating fields that are orders of magnitude larger than those used in conventional colliders. In these accelerators, a drive beam (either laser or particle) produces a plasma wave (wakefield) that accelerates charged particles.

View Article and Find Full Text PDF