Breast cancer is a major cause of death globally, accounting for around 13% of all deaths. Chemotherapy, the common treatment for cancer, can have side effects that lead to the production of reactive oxygen species (ROS) and an increase in oxidative stress in the body. Antioxidants are important for maintaining the health of cells and helping the immune system function properly.
View Article and Find Full Text PDFThe combination of photothermal therapy and chemotherapy has been considered a promising strategy for improving the excellent antitumor activities of these treatments. In this study, we developed a new simple type of pH-sensitive chemo-photothermal combination agent capable of repeated exposures to a near-infrared (NIR) laser and evaluated its anticancer efficacy in vitro and in vivo. Doxorubicin (Dox) and gold nanoclusters (GNCs) were successfully co-loaded into pH-sensitive nanoparticles (poly(ethylene glycol)-poly[(benzyl-l-aspartate)-co-(N-(3-aminopropyl)imidazole-L-aspartamide)] (PEG-PABI)), resulting in a particle size of approximately120 nm with a narrow size distribution.
View Article and Find Full Text PDFLipid drug conjugates (LDCs) have attracted considerable attention in the fields of drug delivery and pharmacology due to their ability to target specific cells, increase drug solubility, reduce toxicity, and improve therapeutic efficacy. These unique features make LDCs promising candidates for the treatment cancer, inflammation, and infectious diseases. In fact, by choosing specific linkers between the lipid and drug molecules, stimuli-responsive LDCs can be designed to target cancer cells based on the unique properties of the tumor microenvironment.
View Article and Find Full Text PDFIntroduction: Ligand-conjugated liposomes are promising for the treatment of specific receptor-overexpressing cancers. However, previous studies have shown inconsistent results because of the varying properties of the ligand, presence of a polyethylene glycol (PEG) coating on the liposome, length of the linker, and density of the ligand.
Methods: Here, we prepared PEGylated liposomes using PEG-linkers of various lengths conjugated with folate and evaluated the effect of the PEG-linker length on the nanoparticle distribution and pharmacological efficacy of the encapsulated drug both in vitro and in vivo.
Purpose: An AE147 peptide-conjugated nanocarrier based on PEGylated liposomes was developed in order to target the metastatic tumors overexpressing urokinase-type plasminogen activator receptor (uPAR), which cancer progression via uPA signaling. Therefore, the AE147 peptide-conjugated nanocarrier system may hold the potential for active targeting of metastatic tumors.
Methods: The AE147 peptide, an antagonist of uPAR, was conjugated to the PEGylated liposomes for targeting metastatic tumors overexpressing uPAR.
The combination of nanotechnology and chemotherapy has resulted in more effective drug design via the development of nanomaterial-based drug delivery systems (DDSs) for tumor targeting. Stimulus-responsive DDSs in response to internal or external signals can offer precisely controlled delivery of preloaded therapeutics. Among the various DDSs, the photo-triggered system improves the efficacy and safety of treatment through spatiotemporal manipulation of light.
View Article and Find Full Text PDFThe use of photo-based nanomedicine in imaging and therapy has grown rapidly. The property of light in converting its energy into different forms has been exploited in the fields of optical imaging (OI) and phototherapy (PT) for diagnostic and therapeutic applications. The development of nanotechnology offers numerous advantages to overcome the challenges of OI and PT.
View Article and Find Full Text PDF