Comb Chem High Throughput Screen
January 2022
Background: The quantitative structure-activity relationship (QSAR) approach is most widely used for the prediction of biological activity of potential medicinal compounds. A QSAR model is developed by correlating the information obtained from chemical structures (numerical descriptors/ independent variables) with the experimental response values (the dependent variable).
Methods: In the current study, we have developed a QSAR model to predict the inhibitory activity of small molecule carboxamides against severe acute respiratory syndrome coronavirus (SARS-- CoV) 3CLpro enzyme.
Environ Sci Pollut Res Int
January 2021
Hydrolysis is one of the most important processes of transformation of organic chemicals in water. The rates of reactions, final chemical entities of these processes, and half-lives of organic chemicals are of considerable interest to environmental chemists as well as authorities involved in the controlling the processing and disposal of such organic chemicals. In this study, we have proposed QSPR models for the prediction of hydrolysis half-life of organic chemicals as a function of different pH and temperature conditions using only two-dimensional molecular descriptors with definite physicochemical significance.
View Article and Find Full Text PDFThe quantitative structure-property relationship (QSPR) approach has widely been used to predict several physicochemical properties of materials employing the information obtained from their chemical structures (numerical descriptors). In the present work, we have generated three individual QSPR models for three different endpoints for a large number of polymers in order to determine their fire retardant property such as heat release capacity, total heat release, and %Char, using the only two-dimensional descriptors with definite physicochemical meaning. Relevant subsets of descriptors were selected employing a genetic algorithm approach; subsequently, the selected descriptors were utilised for the identification of the best combination of the variables for the model generation, while the final models were developed employing the partial least squares (PLS) regression algorithm.
View Article and Find Full Text PDFIn the present work, predictive quantitative structure-property relationship models have been developed to predict refractive indices (RIs) of a set of 221 diverse organic polymers using theoretical two-dimensional descriptors generated on the basis of the structures of polymers' monomer units. Four models have been developed by applying partial least squares (PLS) regression with a different combination of six descriptors obtained via double cross-validation approaches. The predictive ability and robustness of the proposed models were checked using multiple validation strategies.
View Article and Find Full Text PDFWe have reported here a quantitative structure-property relationship (QSPR) model for prediction of air half-life of organic chemicals using a dataset of 302 diverse organic chemicals employing only two-dimensional descriptors with definite physicochemical meaning in order to avoid the computational complexity for higher dimensional molecular descriptors. The developed model was rigorously validated using the internationally accepted internal and external validation metrics. The final partial least squares (PLS) regression model obtained at three latent variables comprises six simple and interpretable 2D descriptors.
View Article and Find Full Text PDFIn the recent years, ecotoxicological hazard potential of biocidal products has been receiving increasing attention in the industries and regulatory agencies. Biocides/pesticides are currently one of the most studied groups of compounds, and their registration cannot be done without the empirical toxicity information. In view of limited experimental data available for these compounds, we have developed Quantitative Structure-Activity Relationship (QSAR) models for the toxicity of biocides to fish and Daphnia magna following principles of QSAR modeling recommended by the OECD (Organization for Economic Cooperation and Development).
View Article and Find Full Text PDFOver the past few years, the ecotoxicological hazard potential of agrochemicals has received much attention in the industries and regulatory agencies. In the current work, we have developed quantitative structure-activity relationship (QSAR) models for Daphnia magna toxicities of different classes of agrochemicals (fungicides, herbicides, insecticides and microbiocides) individually as well as for the combined set with the application of Organization for Economic Co-operation and Development (OECD) recommended guidelines. The models for the individual data sets as well as for the combined set were generated employing only simple and interpretable two-dimensional descriptors, and subsequently strictly validated using test set compounds.
View Article and Find Full Text PDFQuantitative structure-activity/property relationships (QSAR/QSPR) are statistical models which quantitatively correlate quantitative chemical structure information (described as molecular descriptors) to the response end points (biological activity, property, toxicity, etc.). Important strategies for QSAR model development and validation include dataset curation, variable selection, and dataset division, selection of modeling algorithms and appropriate measures of model validation.
View Article and Find Full Text PDF