Publications by authors named "Patel Nikunjkumar"

The proceedings from the 30th August 2023 (Day 2) of the workshop "Physiologically Based Biopharmaceutics Models (PBBM) Best Practices for Drug Product Quality: Regulatory and Industry Perspectives" are provided herein. Day 2 covered PBBM case studies from six regulatory authorities which provided considerations for model verification, validation, and application based on the context of use (COU) of the model. PBBM case studies to define critical material attribute (CMA) specification settings, such as active pharmaceutical ingredient (API) particle size distributions (PSDs) were shared.

View Article and Find Full Text PDF
Article Synopsis
  • - Sparsentan is a medication used to lower protein levels in urine for patients with primary IgA nephropathy who are at high risk of disease progression; it acts on both endothelin and angiotensin II receptors.
  • - A comprehensive pharmacokinetic model was created to understand how sparsentan interacts with various drug-metabolizing enzymes and transporters, particularly focusing on its effects as both a victim and perpetrator of CYP3A4-related drug-drug interactions.
  • - Simulation results indicated that the presence of a strong CYP3A4 inhibitor could more than double sparsentan’s exposure in the body, while complete inhibition of P-glycoprotein (P-gp) had minimal impact on its
View Article and Find Full Text PDF

The bioequivalence of bempedoic acid oral suspension and commercial immediate release (IR) tablet formulations were assessed using a physiologically based pharmacokinetic (PBPK) model. The mechanistic model, developed from clinical mass balance results and in vitro intrinsic solubility, permeability, and dissolution data, was verified against observed clinical pharmacokinetics (PK) results. Model inputs included a fraction of a dose in solution (0.

View Article and Find Full Text PDF

Physiologically-based pharmacokinetic models combine knowledge about physiology, drug product properties, such as physicochemical parameters, absorption, distribution, metabolism, excretion characteristics, formulation attributes, and trial design or dosing regimen to mechanistically simulate drug pharmacokinetics (PK). The current work describes the development of a multiphase, multilayer mechanistic dermal absorption (MPML MechDermA) model within the Simcyp Simulator capable of simulating uptake and permeation of drugs through human skin following application of drug products to the skin. The model was designed to account for formulation characteristics as well as body site- and sex- population variability to predict local and systemic bioavailability.

View Article and Find Full Text PDF

While the concept of 'Virtual Bioequivalence' (VBE) using a combination of modelling, in vitro tests and integration of pre-existing data on systems and drugs is growing from its infancy, building confidence on VBE outcomes requires demonstration of its ability not only in predicting formulation-dependent systemic exposure but also the expected degree of population variability. The concept of variation influencing the outcome of BE, despite being hidden with the cross-over nature of common BE studies, becomes evident when dealing with the acceptance criteria that consider the 90% confidence interval (CI) around the relative bioavailability. Hence, clinical studies comparing a reference product against itself may fail due to within-subject variations associated with the two occasions that the individual receives the same formulation.

View Article and Find Full Text PDF

Unlabelled: Despite the availability of control measures for foot-and-mouth disease (FMD), the application of antiviral agents is imperative due to certain limitations in the prevention and control of FMD. This study pertains to systematic in vivo investigation of ribavirin as a prophylactic/curative agent, both in suckling and adult C57BL/6 mice against foot-and-mouth disease virus (FMDV) infection. In the adult mice, antiviral efficacy was assessed based on standard clinical score, body weight, and viral load.

View Article and Find Full Text PDF

Background: Our understanding of the severe acute respiratory syndrome coronavirus 2 has evolved since the first reported cases in December 2019, and a greater emphasis has been placed on the hyper-inflammatory response in severely ill patients. The purpose of this study was to determine risk factors for mortality and the impact of anti-inflammatory therapies on survival.

Aim: To determine the impact of various therapies on outcomes in severe coronavirus disease 2019 patients with a focus on anti-inflammatory and immune-modulating agents.

View Article and Find Full Text PDF

In this study, we aimed to develop and qualify a PBPK model for scalp application using two drugs with marked differences in physicochemical properties and PK profiles. The parameters related to scalp physiology, drug PK, and formulations were incorporated into a Multi-Phase and Multi-Layer (MPML) Mechanistic Dermal Absorption (MechDermA) model within the Simcyp® Simulator V17. The finasteride PBPK model was linked to its effect on dihydrotestosterone (DHT) levels in plasma and scalp using an indirect response model.

View Article and Find Full Text PDF

This workshop report summarizes the proceedings of Day 2 of a three-day workshop on "Current State and Future Expectations of Translational Modeling Strategies toSupportDrug Product Development, Manufacturing Changes and Controls". From a drug product quality perspective, physiologically based biopharmaceutics modeling (PBBM) is a tool to link variations in the drug product quality attributes to in vivo outcomes enabling the establishment of clinically relevant drug product specifications (CRDPS). Day 2 of the workshop focused on best practices in developing, verifying and validating PBBM.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of coronavirus disease 2019 (COVID-19), an ongoing pandemic that started as an outbreak in China. The clinical picture varies from asymptomatic or mild cases to critically ill patients. Most of the critically ill patients present with hypoxia due to acute respiratory distress syndrome.

View Article and Find Full Text PDF

In the present study, an in vitro-in vivo extrapolation of dissolution integrated to a physiologically based pharmacokinetics modeling approach, considering a product-specific particle size distribution and a self-buffering effect of the drug, is introduced and appears to be a promising translational modeling strategy to support drug product development, manufacturing changes and setting clinically relevant specifications for immediate release formulations containing ibuprofen and other weak acids with similar properties.

View Article and Find Full Text PDF

Introduction: When developing bio-enabling formulations, innovative tools are required to understand and predict in vivo performance and may facilitate approval by regulatory authorities. EMEND® is an example of such a formulation, in which the active pharmaceutical ingredient, aprepitant, is nano-sized. The aims of this study were 1) to characterize the 80 mg and 125 mg EMEND® capsules in vitro using biorelevant tools, 2) to develop and parameterize a physiologically based pharmacokinetic (PBPK) model to simulate and better understand the in vivo performance of EMEND® capsules and 3) to assess which parameters primarily influence the in vivo performance of this formulation across the therapeutic dose range.

View Article and Find Full Text PDF

This publication summarizes the proceedings of day 2 of a 3-day workshop on "Dissolution and Translational Modeling Strategies Enabling Patient-Centric Product Development." Patient-centric drug product development from a drug product quality perspective necessitates the establishment of clinically relevant drug product specifications via an in vitro-in vivo link. Modeling and simulation offer a path to establish this link; in this regard, physiologically based modeling has been implemented successfully to support regulatory decision-making and drug product labeling.

View Article and Find Full Text PDF

QT interval prolongation typically assessed with dedicated clinical trials called thorough QT/QTc (TQT) studies is used as surrogate to identify the proarrhythmic risk of drugs albeit with criticism in terms of cost-effectiveness in establishing the actual risk of torsade de pointes (TdP). Quantitative systems toxicology and safety (QSTS) models have potential to quantitatively translate the in vitro cardiac safety data to clinical level including simulation of TQT trials. Virtual TQT simulations have been exemplified with use of two related drugs tolterodine and fesoterodine.

View Article and Find Full Text PDF

Drug-induced cardiac arrhythmia, especially occurrence of torsade de pointes (TdP), has been a leading cause of attrition and post-approval re-labeling and withdrawal of many drugs. TdP is a multifactorial event, reflecting more than just drug-induced cardiac ion channel inhibition and QT interval prolongation. This presents a translational gap in extrapolating pre-clinical and clinical cardiac safety assessment to estimate TdP risk reliably, especially when the drug of interest is used in combination with other QT-prolonging drugs for treatment of diseases such as tuberculosis.

View Article and Find Full Text PDF

Cardiotoxicity is among the top drug safety concerns, and is of specific interest in tuberculosis, where this is a known or potential adverse event of current and emerging treatment regimens. As there is a need for a tool, beyond the QT interval, to quantify cardiotoxicity early in drug development, an empirical decision tree based classifier was developed to predict the risk of Torsades de pointes (TdP). The cardiac risk algorithm was developed using pseudo-electrocardiogram (ECG) outputs derived from cardiac myocyte electromechanical model simulations of increasing concentrations of 96 reference compounds which represented a range of clinical TdP risk.

View Article and Find Full Text PDF

A quantitative systems toxicology (QST) model for citalopram was established to simulate, in silico, a 'virtual twin' of a real patient to predict the occurrence of cardiotoxic events previously reported in patients under various clinical conditions. The QST model considers the effects of citalopram and its most notable electrophysiologically active primary (desmethylcitalopram) and secondary (didesmethylcitalopram) metabolites, on cardiac electrophysiology. The in vitro cardiac ion channel current inhibition data was coupled with the biophysically detailed model of human cardiac electrophysiology to investigate the impact of (i) the inhibition of multiple ion currents (I, I, I); (ii) the inclusion of metabolites in the QST model; and (iii) unbound or total plasma as the operating drug concentration, in predicting clinically observed QT prolongation.

View Article and Find Full Text PDF

The aim of this study was to evaluate gastrointestinal (GI) dissolution, supersaturation, and precipitation of posaconazole, formulated as an acidified (pH 1.6) and neutral (pH 7.1) suspension.

View Article and Find Full Text PDF

Majority of bioequivalence studies are conducted in healthy volunteers. It has been argued that bioequivalence may not necessarily hold true in relevant patient populations due to a variety of reasons which affect one formulation more than the other for instance in achlorhydric patients where elevated gastric pH may lead to differential effects on formulations which are pH-sensitive with respect to release or dissolution. We therefore examined achlorhydria-related disparity in bioequivalence of levothyroxine and nifedipine formulations using virtual bioequivalence within a physiologically-based pharmacokinetic (PBPK) modelling framework.

View Article and Find Full Text PDF

Mechanistic modeling of in vitro data generated from metabolic enzyme systems (viz., liver microsomes, hepatocytes, rCYP enzymes, etc.) facilitates in vitro-in vivo extrapolation (IVIV_E) of metabolic clearance which plays a key role in the successful prediction of clearance in vivo within physiologically-based pharmacokinetic (PBPK) modeling.

View Article and Find Full Text PDF

Background: Kidney donor outcomes are gaining attention, particularly as donor eligibility criteria continue to expand. Kidney size, a useful predictor of recipient kidney function, also likely correlates with donor outcomes. Although donor evaluation includes donor kidney size measurements, the association between kidney size and outcomes are poorly defined.

View Article and Find Full Text PDF

Postabsorptive factors which can affect systemic drug exposure are assumed to be dependent on the active pharmaceutical ingredient (API), and thus independent of formulation. In contrast, preabsorptive factors, for example, hypochlorhydria, might affect systemic exposure in both an API and a formulation-dependent way. The aim of this study was to evaluate whether the oral absorption of 2 poorly soluble, weakly basic APIs, ketoconazole (KETO) and posaconazole (POSA), would be equally sensitive to changes in dissolution rate under the following dosing conditions-coadministration with water, with food, with carbonated drinks, and in drug-induced hypochlorhydria.

View Article and Find Full Text PDF

Spontaneous superior mesenteric artery (SMA) dissection is a rare, but potentially fatal disease. Prompt diagnosis and treatment of SMA dissections result in a lower prevalence of intestinal infarction and mortality. In the current era, imaging techniques can promptly diagnose SMA dissection; however, no definitive guidelines have been established to treat this condition.

View Article and Find Full Text PDF

Background And Purpose: To determine the predictive performance of in silico models using drug-specific preclinical cardiac electrophysiology data to investigate drug-induced arrhythmia risk (e.g. Torsade de pointes (TdP)) in virtual human subjects.

View Article and Find Full Text PDF

Background: Hepatitis C virus (HCV) infection is prevalent in the renal transplant population but direct acting antiviral agents (DAA) provide an effective cure of HCV infection without risk of allograft rejection.

Methods: We report our experience treating 43 renal transplant recipients with 4 different DAA regimens.

Results: One hundred percent achieved a sustained viral response by 12 weeks after therapy, and DAA regimens were well tolerated.

View Article and Find Full Text PDF