Publications by authors named "Pat Heslop Harrison"

Article Synopsis
  • - Flavonoids in the Musaceae family play a role in pigmentation, stress responses like cold resistance, and contribute to human nutrition; understanding their biosynthetic genes helps reveal their evolutionary diversity.
  • - The study identified 71-80 flavonoid biosynthetic genes through genome sequencing and found that gene numbers increased via duplications, showing conserved genes across Musaceae species.
  • - Gene expression related to flavonoid production was altered under cold conditions, indicating potential for using genetic variation in breeding programs to enhance stress resistance in bananas.
View Article and Find Full Text PDF

Epistasis refers to nonallelic interaction between genes that cause bias in estimates of genetic parameters for a phenotype with interactions of two or more genes affecting the same trait. Partitioning of epistatic effects allows true estimation of the genetic parameters affecting phenotypes. Multigenic variation plays a central role in the evolution of complex characteristics, among which pleiotropy, where a single gene affects several phenotypic characters, has a large influence.

View Article and Find Full Text PDF

Background And Aims: The grass genus Urochloa (Brachiaria) sensu lato includes forage crops that are important for beef and dairy industries in tropical and sub-tropical Africa, South America and Oceania/Australia. Economically important species include U. brizantha, U.

View Article and Find Full Text PDF

Chromosomes have been studied since the late nineteenth century in the disciplines of cytology and cytogenetics. Analyzing their numbers, features, and dynamics has been tightly linked to the technical development of preparation methods, microscopes, and chemicals to stain them, with latest continuing developments described in this volume. At the end of the twentieth and beginning of the twenty-first centuries, DNA technology, genome sequencing, and bioinformatics have revolutionized how we see, use, and analyze chromosomes.

View Article and Find Full Text PDF

Structural variations (SVs) are a major contributor to genetic diversity and phenotypic variations, but their prevalence and functions in domestic animals are largely unexplored. Here we generated high-quality genome assemblies for 15 individuals from genetically diverse sheep breeds using Pacific Biosciences (PacBio) high-fidelity sequencing, discovering 130.3 Mb nonreference sequences, from which 588 genes were annotated.

View Article and Find Full Text PDF

Clonal propagation enables favourable crop genotypes to be rapidly selected and multiplied. However, the absence of sexual propagation can lead to low genetic diversity and accumulation of deleterious mutations, which may eventually render crops less resilient to pathogens or environmental change. To better understand this trade-off, we characterize the domestication and contemporary genetic diversity of Enset (Ensete ventricosum), an indigenous African relative of bananas (Musa) and a principal starch staple for 20 million Ethiopians.

View Article and Find Full Text PDF
Article Synopsis
  • Musa beccarii, a banana species from Borneo, has a unique chromosome number (x = 9) and is known for its ornamental use; its genome was sequenced to explore genetic diversity within the Musaceae family.* -
  • The assembled genome is the largest among known Musaceae (∼570 Mbp) and revealed significant chromosome changes and variations in gene types, including fewer terpenoid synthase genes but an abundance of lipid metabolism genes.* -
  • This study marks the first high-quality chromosome-scale genome assembly for the Callimusa section, providing valuable insights into the evolution of Musaceae genomes and contributing to our understanding of plant genetics.*
View Article and Find Full Text PDF

Mutations with deleterious consequences in nature may be conditionally deleterious in crop plants. That is, while some genetic variants may reduce fitness under wild conditions and be subject to purifying selection, they can be under positive selection in domesticates. Such deleterious alleles can be plant breeding targets, particularly for complex traits.

View Article and Find Full Text PDF
Article Synopsis
  • The Banana Genome Hub is a centralized resource offering access to genome assemblies, annotations, and omics data for bananas and related species.
  • It features advanced tools for genomic analysis like BLAST and JBrowse, alongside additional interfaces for gene searches, comparative analyses, and genomic structure visualizations.
  • The platform also provides a diverse catalog of genetic variants and guides for future sequencing efforts, aiming to support the banana research community in various scientific endeavors.
View Article and Find Full Text PDF

Background: Ensete glaucum (2n = 2x = 18) is a giant herbaceous monocotyledonous plant in the small Musaceae family along with banana (Musa). A high-quality reference genome sequence assembly of E. glaucum is a resource for functional and evolutionary studies of Ensete, Musaceae, and the Zingiberales.

View Article and Find Full Text PDF

The EU chemicals strategy for sustainability (CSS) asserts that both human health and the environment are presently threatened and that further regulation is necessary. In a recent Guest Editorial, members of the German competent authority for risk assessment, the BfR, raised concerns about the scientific justification for this strategy. The complexity and interdependence of the networks of regulation of chemical substances have ensured that public health and wellbeing in the EU have continuously improved.

View Article and Find Full Text PDF

(including , and some ) tropical grasses are native to Africa and are now, after selection and breeding, planted worldwide, particularly in South America, as important forages with huge potential for further sustainable improvement and conservation of grasslands. We aimed to develop an optimized approach to determine ploidy of germplasm collection of this tropical forage grass group using dried leaf material, including approaches to collect, dry and preserve plant samples for flow cytometry analysis. Our methods enable robust identification of ploidy levels (coefficient of variation of G0/G1 peaks, CV, typically <5%).

View Article and Find Full Text PDF

Heavy doses of gamma irradiation can reduce linkage drag by disrupting large sized alien translocations and promoting exchanges between crop and wild genomes. Resistance to mustard aphid (Lipaphis erysimi) infestation was significantly improved in Brassica juncea through B. juncea-B.

View Article and Find Full Text PDF

Enset (Ensete ventricosum) is a major starch staple and food security crop for 20 million people. Despite substantial diversity in morphology, genetics, agronomy and utilization across its range, nutritional characteristics have only been reported in relatively few landraces. Here, we survey nutritional composition in 22 landraces from three enset growing regions.

View Article and Find Full Text PDF

Theoretically, both synthetic endocrine-disrupting chemicals (S-EDCs) and natural (exogenous and endogenous) endocrine-disrupting chemicals (N-EDCs) can interact with endocrine receptors and disturb hormonal balance. However, compared to endogenous hormones, S-EDCs are only weak partial agonists with receptor affinities several orders of magnitude lower than S-EDCs. Thus, to elicit observable effects, S-EDCs require considerably higher concentrations to attain sufficient receptor occupancy or to displace natural hormones and other endogenous ligands.

View Article and Find Full Text PDF

Theoretically, both synthetic endocrine disrupting chemicals (S-EDCs) and natural (exogenous and endogenous) endocrine disrupting chemicals (N-EDCs) can interact with endocrine receptors and disturb hormonal balance. However, compared to endogenous hormones, S-EDCs are only weak partial agonists with receptor affinities several orders of magnitude lower. Thus, to elicit observable effects, S-EDCs require considerably higher concentrations to attain sufficient receptor occupancy or to displace natural hormones and other endogenous ligands.

View Article and Find Full Text PDF

Theoretically, both synthetic endocrine disrupting chemicals (S-EDCs) and natural (exogenous and endogenous) endocrine disrupting chemicals (N-EDCs) can interact with endocrine receptors and disturb hormonal balance. However, compared to endogenous hormones, S-EDCs are only weak partial agonists with receptor affinities several orders of magnitude lower. Thus, to elicit observable effects, S-EDCs require considerably higher concentrations to attain sufficient receptor occupancy or to displace natural hormones and other endogenous ligands.

View Article and Find Full Text PDF

Theoretically, both synthetic endocrine disrupting chemicals (S-EDCs) and natural (exogenous and endogenous) endocrine disrupting chemicals (N-EDCs) can interact with endocrine receptors and disturb hormonal balance. However, compared to endogenous hormones, S-EDCs are only weak partial agonists with receptor affinities several orders of magnitude lower. Thus, to elicit observable effects, S-EDCs require considerably higher concentrations to attain sufficient receptor occupancy or to displace natural hormones and other endogenous ligands.

View Article and Find Full Text PDF

Theoretically, both synthetic endocrine disrupting chemicals (S-EDCs) and natural (exogenous and endogenous) endocrine disrupting chemicals (N-EDCs) can interact with endocrine receptors and disturb hormonal balance. However, compared to endogenous hormones, S-EDCs are only weak partial agonists with receptor affinities several orders of magnitude lower. Thus, to elicit observable effects, S-EDCs require considerably higher concentrations to attain sufficient receptor occupancy or to displace natural hormones and other endogenous ligands.

View Article and Find Full Text PDF

Theoretically, both synthetic endocrine disrupting chemicals (S-EDCs) and natural (exogenous and endogenous) endocrine disrupting chemicals (N-EDCs) can interact with endocrine receptors and disturb hormonal balance. However, compared to endogenous hormones, S-EDCs are only weak partial agonists with receptor affinities several orders of magnitude lower. Thus, to elicit observable effects, S-EDCs require considerably higher concentrations to attain sufficient receptor occupancy or to displace natural hormones and other endogenous ligands.

View Article and Find Full Text PDF