Proc Natl Acad Sci U S A
July 2024
The mutualistic arbuscular mycorrhizal (AM) symbiosis arose in land plants more than 450 million years ago and is still widely found in all major land plant lineages. Despite its broad taxonomic distribution, little is known about the molecular components underpinning symbiosis outside of flowering plants. The ARBUSCULAR RECEPTOR-LIKE KINASE (ARK) is required for sustaining AM symbiosis in distantly related angiosperms.
View Article and Find Full Text PDFThe apocarotenoid strigolactones (SLs) facilitate pre-symbiotic communication between arbuscular mycorrhizal (AM) fungi and plants. Related blumenol-C-glucosides (blumenols), have also been associated with symbiosis, but the cues that are involved in the regulation of blumenol accumulation during AM symbiosis remain unclear. In rice, our analyses demonstrated a strict correlation between foliar blumenol abundance and intraradical fungal colonisation.
View Article and Find Full Text PDFArbuscular mycorrhizal (AM) symbiosis, the nutritional partnership between AM fungi and most plant species, is globally ubiquitous and of great ecological and agricultural importance. Studying the processes of AM symbiosis is confounded by its highly spatiotemporally dynamic nature. While microscopy methods exist to probe the spatial side of this plant-fungal interaction, the temporal side remains more challenging, as reliable deep-tissue time-lapse imaging requires both symbiotic partners to remain undisturbed over prolonged time periods.
View Article and Find Full Text PDFThe root systems of most plant species are aided by the soil-foraging capacities of symbiotic arbuscular mycorrhizal (AM) fungi of the Glomeromycotina subphylum. Despite recent advances in our knowledge of the ecology and molecular biology of this mutualistic symbiosis, our understanding of the AM fungi genome biology is just emerging. Presented here is a close to T2T genome assembly of the model AM fungus Rhizophagus irregularis DAOM197198, achieved through Nanopore long-read DNA sequencing and Hi-C data.
View Article and Find Full Text PDFMany plants associate with arbuscular mycorrhizal fungi for nutrient acquisition, while legumes also associate with nitrogen-fixing rhizobial bacteria. Both associations rely on symbiosis signaling and here we show that cereals can perceive lipochitooligosaccharides (LCOs) for activation of symbiosis signaling, surprisingly including Nod factors produced by nitrogen-fixing bacteria. However, legumes show stringent perception of specifically decorated LCOs, that is absent in cereals.
View Article and Find Full Text PDFRoot systems regulate their branching patterns in response to environmental stimuli. Lateral root development in both monocotyledons and dicotyledons is enhanced in response to inoculation with arbuscular mycorrhizal (AM) fungi, which has been interpreted as a developmental response to specific, symbiosis-activating chitinaceous signals. Here, we report that generic instead of symbiosis-specific, chitin-derived molecules trigger lateral root formation.
View Article and Find Full Text PDFThe arbuscular mycorrhizal (AM) symbiosis is characterized by the reciprocal exchange of nutrients. AM fungi are oleaginous microorganisms that obtain essential fatty acids from host plants. A lipid biosynthesis and delivery pathway has been proposed to operate in inner root cortex cells hosting arbuscules, a cell type challenging to access microscopically.
View Article and Find Full Text PDFUnlabelled: Despite the vast abundance and global importance of plant and microbial species, the large majority go unnoticed and unappreciated by humans, contributing to pressing issues including the neglect of study and research of these organisms, the lack of interest and support for their protection and conservation, low microbial and botanical literacy in society, and a growing disconnect between people and nature. The invisibility of many of these organisms is a key factor in their oversight by society, but also points to a solution: sharing the wealth of visual data produced during scientific research with a broader audience. Here, we discuss how the invisible can be visualised for a public audience, and the benefits it can bring.
View Article and Find Full Text PDFArbuscular mycorrhizal (AM) fungi form mutualistic relationships with most land plant species. AM fungi have long been considered as ancient asexuals. Long-term clonal evolution would be remarkable for a eukaryotic lineage and suggests the importance of alternative mechanisms to promote genetic variability facilitating adaptation.
View Article and Find Full Text PDFCurr Opin Plant Biol
August 2021
The evolutionarily ancient α/β hydrolase DWARF14-LIKE (D14L) is indispensable for the perception of beneficial arbuscular mycorrhizal (AM) fungi in the rhizosphere, and for a range of developmental processes. Variants of D14L recognise natural strigolactones and the smoke constituent karrikin, both classified as butenolides, and additional unknown ligand(s), critical for symbiosis and development. Recent advances in the understanding of downstream effects of D14L signalling include biochemical evidence for the degradation of the repressor SMAX1.
View Article and Find Full Text PDFReceptor-like kinases (RLKs) are key cell signaling components. The rice ARBUSCULAR RECEPTOR-LIKE KINASE 1 (OsARK1) regulates the arbuscular mycorrhizal (AM) association postarbuscule development and belongs to an undefined subfamily of RLKs. Our phylogenetic analysis revealed that has an ancient paralogue in spermatophytes, Single and double mutants in rice showed a nonredundant AM symbiotic function for Global transcriptomics identified a set of genes coregulated by the two RLKs, suggesting that and orchestrate symbiosis in a common pathway.
View Article and Find Full Text PDFArbuscular mycorrhizal fungi (AMF) are ubiquitous in cultivated soils, forming symbiotic relationships with the roots of major crop species. Studies in controlled conditions have demonstrated the potential of AMF to enhance the growth of host plants. However, it is difficult to estimate the actual benefit in the field, not least because of the lack of suitable AMF-free controls.
View Article and Find Full Text PDFMost plants associate with beneficial arbuscular mycorrhizal (AM) fungi that facilitate soil nutrient acquisition. Prior to contact, partner recognition triggers reciprocal genetic remodelling to enable colonisation. The plant Dwarf14-Like (D14L) receptor conditions pre-symbiotic perception of AM fungi, and also detects the smoke constituent karrikin.
View Article and Find Full Text PDFPlant receptor-like kinases (RLKs) control the initiation, development, and maintenance of symbioses with beneficial mycorrhizal fungi and nitrogen-fixing bacteria. Carbohydrate perception activates symbiosis signaling via Lysin-motif RLKs and subsequently the common symbiosis signaling pathway. As the receptors activated are often also immune receptors in multiple species, exactly how carbohydrate identities avoid immune activation and drive symbiotic outcome is still not fully understood.
View Article and Find Full Text PDFCold Spring Harb Perspect Biol
June 2019
Phosphorous is important for life but often limiting for plants. The symbiotic pathway of phosphate uptake via arbuscular mycorrhizal fungi (AMF) is evolutionarily ancient and today occurs in natural and agricultural ecosystems alike. Plants capable of this symbiosis can obtain up to all of the phosphate from symbiotic fungi, and this offers potential means to develop crops less dependent on unsustainable P fertilizers.
View Article and Find Full Text PDFDuring establishment of arbuscular mycorrhizal symbioses, fungal hyphae invade root cells producing transient tree-like structures, the arbuscules, where exchange of photosynthates for soil minerals occurs. Arbuscule formation and collapse lead to rapid production and degradation of plant and fungal membranes, their spatiotemporal dynamics directly influencing nutrient exchange. We determined the ultra-structural details of both membrane surfaces and the interstitial apoplastic matrix by transmission electron microscopy tomography during growth and senescence of Rhizophagus irregularis arbuscules in rice.
View Article and Find Full Text PDFHigh-through-put (HTP) screening for functional arbuscular mycorrhizal fungi (AMF)-associations is challenging because roots must be excavated and colonization evaluated by transcript analysis or microscopy. Here we show that specific leaf-metabolites provide broadly applicable accurate proxies of these associations, suitable for HTP-screens. With a combination of untargeted and targeted metabolomics, we show that shoot accumulations of hydroxy- and carboxyblumenol C-glucosides mirror root AMF-colonization in plants.
View Article and Find Full Text PDFAnnu Rev Phytopathol
August 2018
Most land plants engage in mutually beneficial interactions with arbuscular mycorrhizal (AM) fungi, the fungus providing phosphate and nitrogen in exchange for fixed carbon. During presymbiosis, both organisms communicate via oligosaccharides and butenolides. The requirement for a rice chitin receptor in symbiosis-induced lateral root development suggests that cell division programs operate in inner root tissues during both AM and nodule symbioses.
View Article and Find Full Text PDFContents Summary 1135 I. Introduction 1135 II. Recruitment of plant metabolites and hormones as signals in AM symbiosis 1136 III.
View Article and Find Full Text PDFPerception of arbuscular mycorrhizal fungi (AMF) triggers distinct plant signalling responses for parallel establishment of symbiosis and induction of lateral root formation. Rice receptor kinase CHITIN ELICITOR RECEPTOR KINASE 1 (CERK1) and α/β-fold hydrolase DWARF14-LIKE (D14L) are involved in pre-symbiotic fungal perception. After 6 wk post-inoculation with Rhizophagus irregularis, root developmental responses, fungal colonization and transcriptional responses were monitored in two independent cerk1 null mutants; a deletion mutant lacking D14L, and with D14L complemented as well as their respective wild-type cultivars (cv Nipponbare and Nihonmasari).
View Article and Find Full Text PDF