Two neutral copper(I) halide complexes ([Cu(BTU)X], = Cl, Br) were prepared by the reduction of the corresponding copper(II) halides (chloride or bromide) with a benzoylthiourea (BTU, -(3,4-diheptyloxybenzoyl)-'-(4-heptadecafluorooctylphenyl)thiourea) ligand in ethanol. The two copper(I) complexes show a very interesting combination of 2D supramolecular structures, liquid crystalline, emission, and 1D ionic conduction properties. Their chemical structure was ascribed based on ESI-MS, elemental analysis, IR, and NMR spectroscopies (H and C), while the mesomorphic behavior was analyzed through a combination of differential scanning calorimetry (DSC), polarizing optical microscopy (POM), and powder X-ray diffraction (XRD).
View Article and Find Full Text PDFPb(Zr,Ti)O (PZT) is the most common ferroelectric (FE) material widely used in solid-state technology. Despite intense studies of PZT over decades, its intrinsic band structure, electron energy depending on 3D momentum k, is still unknown. Here, Pb(Zr Ti )O using soft-X-ray angle-resolved photoelectron spectroscopy (ARPES) is explored.
View Article and Find Full Text PDFMagnetic perovskite films have promising properties for use in energy-efficient spintronic devices and magnetic refrigeration. Here, an epitaxial ferromagnetic LaBaMnTiO (LBMTO-5) thin film was grown on SrTiO(001) single crystal substrate by pulsed laser deposition. High-resolution X-ray diffraction proved the high crystallinity of the film with tetragonal symmetry.
View Article and Find Full Text PDFThe surface physico-chemistry of metallic implants governs their successful long-term functionality for orthopedic and dentistry applications. Here, we investigated the feasibility of harmoniously combining two of the star materials currently employed in bone treatment/restoration, namely, calcium-phosphate-based bioceramics (in the form of coatings that have the capacity to enhance osseointegration) and titanium alloys (used as bulk implant materials due to their mechanical performance and lack of systemic toxicity). For the first time, bovine-bone-derived hydroxyapatite (BHA) was layered on top of Ti6Al4V substrates using powder injection laser cladding technology, and then subjected, in this first stage of the research, to an array of physical-chemical analyses.
View Article and Find Full Text PDFFe (acceptor) and Nb (donor) doped epitaxial Pb(ZrTi)O (PZT) films were grown on single crystal SrTiO substrates and their electric properties were compared to those of un-doped PZT layers deposited in similar conditions. All the films were grown from targets produced from high purity precursor oxides and the doping was in the limit of 1% atomic in both cases. The remnant polarization, the coercive field and the potential barriers at electrode interfaces are different, with lowest values for Fe doping and highest values for Nb doping, with un-doped PZT in between.
View Article and Find Full Text PDFEpitaxial LaSrMnO films with different thicknesses (9-90 nm) were deposited on SrTiO (0 0 1) substrates by pulsed laser deposition. The films have been investigated with respect to morpho-structural, magnetic, and magneto-transport properties, which have been proven to be thickness dependent. Magnetic contributions with different switching mechanisms were evidenced, depending on the perovskite film thickness.
View Article and Find Full Text PDFPristine high-density bulk disks of MgB with added hexagonal BN (10 wt.%) were prepared using spark plasma sintering. The BN-added samples are machinable by chipping them into desired geometries.
View Article and Find Full Text PDFThe frequency and temperature dependence of dielectric properties of CHNHPbI (MAPI) crystals have been studied and analyzed in connection with temperature-dependent structural studies. The obtained results bring arguments for the existence of ferroelectricity and aim to complete the current knowledge on the thermally activated conduction mechanisms, in dark equilibrium and in the presence of a small external a.c.
View Article and Find Full Text PDFCation-substituted hydroxyapatite (HA), standalone or as a composite (blended with polymers or metals), is currently regarded as a noteworthy candidate material for bone repair/regeneration either in the form of powders, porous scaffolds or coatings for endo-osseous dental and orthopaedic implants. As a response to the numerous contradictions reported in literature, this work presents, in one study, the physico-chemical properties and the cytocompatibility response of single cation-doped (Ce, Mg, Sr or Zn) HA nanopowders in a wide concentration range (0.5-5 at.
View Article and Find Full Text PDFStructural and electrical properties of epitaxial Pb(ZrTi)O films grown by pulsed laser deposition from targets with different purities are investigated in this study. One target was produced in-house by using high purity precursor oxides (at least 99.99%), and the other target was a commercial product (99.
View Article and Find Full Text PDFIn this study, nano-BaTiO (BTO) powders were obtained via the solvothermal method at different reaction times and were investigated using transmission electron microscopy (TEM), X-ray diffraction (XRD) and Raman spectroscopy. The results were compared with those obtained for a larger crystallite size BTO powder (BTO-m). The sizes of the cuboid crystallites (as determined by XRD and TEM) ranged from about 18 to 24 nm, depending on the reaction time.
View Article and Find Full Text PDFWe report on new biomaterials with promising bone and cartilage regeneration potential, from sustainable, cheap resources of fish origin. Thin films were fabricated from fish bone-derived bi-phasic calcium phosphate targets pulsed laser deposition with a KrF * excimer laser source (λ = 248 nm, τ ≤ 25 ns). Targets and deposited nanostructures were characterized by SEM and XRD, as well as by Energy Dispersive X-ray (EDX) and FTIR spectroscopy.
View Article and Find Full Text PDFBulk discs (20 mm diameter and 4.3 mm thickness) of MgB added with GeCHO were obtained by Spark Plasma Sintering. Six samples with composition MgB(GeCHO) and one undoped sample were fabricated under similar conditions and were magnetically characterized in order to determine the scattering of properties and reproducibility.
View Article and Find Full Text PDFMixtures of BC, α-AlB and B powders were reactively spark plasma sintered at 1800 °C. Crystalline and amorphous boron powders were used. Samples were tested for their impact behavior by the Split Hopkinson Pressure Bar method.
View Article and Find Full Text PDFHigh-performance bioceramics are required for preventing failure and prolonging the life-time of bone grafting scaffolds and osseous implants. The proper identification and development of materials with extended functionalities addressing socio-economic needs and health problems constitute important and critical steps at the heart of clinical research. Recent findings in the realm of ion-substituted hydroxyapatite (HA) could pave the road towards significant developments in biomedicine, with an emphasis on a new generation of orthopaedic and dentistry applications, since such bioceramics are able to mimic the structural, compositional and mechanical properties of the bone mineral phase.
View Article and Find Full Text PDFA series of liquid crystals with various lanthanide ions (Eu , Sm , and Tb ) was designed and prepared starting from the corresponding lanthanide nitrates and N-alkylated 4-pyridone derivatives bearing mesogenic 3,4,5-tris(alkyloxy)benzyl moieties (alkyl=hexyl, octyl, decyl, dodecyl, tetradecyl, or hexadecyl). These new lanthanidomesogens were investigated for their mesogenic properties by a combination of differential scanning calorimetry, polarizing optical microscopy, and temperature-dependent powder X-ray diffraction (XRD). Their thermal stability was assessed by thermogravimetric analysis.
View Article and Find Full Text PDFHere we report a ferroelectric capacitor structure obtained by alternating ferroelectric and insulator thin-film layers which allows an increase of up to 2 polarization states, with n the number of ferroelectric layers. Four and up to eight distinct, stable and independently addressed polarization states are experimentally demonstrated in this work. The experimental findings are supported by a theoretical model based on the Landau-Ginzburg-Devonshire theory.
View Article and Find Full Text PDFThe compensation of the depolarization field in ferroelectric layers requires the presence of a suitable amount of charges able to follow any variation of the ferroelectric polarization. These can be free carriers or charged defects located in the ferroelectric material or free carriers coming from the electrodes. Here we show that a self-doping phenomenon occurs in epitaxial, tetragonal ferroelectric films of Pb(Zr0.
View Article and Find Full Text PDFA new class of thermotropic lanthanidomesogens has been designed and prepared. They are based on 4-pyridone ligands that possess mesogenic cyanobiphenyl groups attached to the 4-pyridone unit via a flexible long alkyl spacer and show a very high thermal stability (decomposition temperatures near 300 °C). Depending on the alkyl length spacer, these complexes exhibit a SmA phase with transition temperatures influenced by the number of mesogenic groups employed and the spacer length.
View Article and Find Full Text PDFElectrode interface is a key element in controlling the macroscopic electrical properties of the ferroelectric capacitors based on thin films. In the case of epitaxial ferroelectrics, the electrode interface is essential in controlling the leakage current and the polarization switching, two important elements in the read/write processes of nonvolatile memories. However, the relation between the polarization bound charges and the electronic properties of the electrode interfaces is not yet well understood.
View Article and Find Full Text PDFIn this work we report our studies concerning the synthesis and characterisation of a series of imine derivatives that incorporate the 2-phenylpyridine (2-ppy) core. These derivatives were used in the cyclometalating reactions of platinum(II) or palladium(II) in order to prepare several complexes with liquid crystalline properties. Depending on the starting materials used as well as the solvents employed, different metal complexes were obtained, some of them showing both liquid crystalline behaviour and luminescence properties at room temperature.
View Article and Find Full Text PDF