Through an appropriate election of the molecular orbital basis, we show analytically that the molecular dissociation occurring in a Heyrovsky reaction can be interpreted as a quantum dynamical phase transition, i.e., an analytical discontinuity in the molecular energy spectrum induced by the catalyst.
View Article and Find Full Text PDFWhen a qubit or spin interacts with others under a many-body Hamiltonian, the information it contains progressively scrambles. Here, nuclear spins of an adamantane crystal are used as a quantum simulator to monitor such dynamics through out-of-time-order correlators, while a Loschmidt echo (LE) asses how weak perturbations degrade the information encoded in these increasingly complex states. Both observables involve the implementation of a time-reversal procedure which, in practice, involves inverting the sign of the effective Hamiltonian.
View Article and Find Full Text PDFIn this article, we introduce a pulse sequence which allows the monitoring of multiple quantum coherences distribution of correlated spin states developed with scaled dipolar Hamiltonian. The pulse sequence is a modification of our previous Proportionally Refocused Loschmidt echo (PRL echo) with phase increment, in order to verify the accuracy of the weighted coherent quantum dynamics. The experiments were carried out with different scaling factors to analyze the evolution of the total magnetization, the time dependence of the multiple quantum coherence orders, and the development of correlated spins clusters.
View Article and Find Full Text PDFEchoes are ubiquitous phenomena in several branches of physics, ranging from acoustics, optics, condensed matter and cold atoms to geophysics. They are at the base of a number of very useful experimental techniques, such as nuclear magnetic resonance, photon echo and time-reversal mirrors. Particularly interesting physical effects are obtained when the echo studies are performed on complex systems, either classically chaotic, disordered or many-body.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
June 2016
A local excitation in a quantum many-spin system evolves deterministically. A time-reversal procedure, involving the inversion of the signs of every energy and interaction, should produce the excitation revival. This idea, experimentally coined in nuclear magnetic resonance, embodies the concept of the Loschmidt echo (LE).
View Article and Find Full Text PDFWe performed Loschmidt echo nuclear magnetic resonance experiments to study decoherence under a scaled dipolar Hamiltonian by means of a symmetrical time-reversal pulse sequence denominated Proportionally Refocused Loschmidt (PRL) echo. The many-spin system represented by the protons in polycrystalline adamantane evolves through two steps of evolution characterized by the secular part of the dipolar Hamiltonian, scaled down with a factor |k| and opposite signs. The scaling factor can be varied continuously from 0 to 1/2, giving access to a range of complexity in the dynamics.
View Article and Find Full Text PDFIn this work we show that molecular chemical bond formation and dissociation in the presence of the d-band of a metal catalyst can be described as a quantum dynamical phase transition (QDPT). This agrees with DFT calculations that predict sudden jumps in some observables as the molecule breaks. According to our model this phenomenon emerges because the catalyst provides for a non-Hermitian Hamiltonian.
View Article and Find Full Text PDFWe have studied the plasmonic properties of aperiodic arrays of identical nanoparticles (NPs) formed by two opposite and equal graded-chains (a chain where interactions change gradually). We found that these arrays concentrate the external electromagnetic fields even in the long wavelength limit. The phenomenon was understood by identifying the system with an effective cavity where plasmonics excitations are trapped between effective band edges, resulting from the change of passband with the NP's position.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
September 2013
Numerically, we study the time fluctuations of few-body observables after relaxation in isolated dynamical quantum systems of interacting particles. Our results suggest that they decay exponentially with system size in both regimes, integrable and chaotic. The integrable systems considered are solvable with the Bethe ansatz and have a highly nondegenerate spectrum.
View Article and Find Full Text PDFFloquet theory combined with a realistic description of the electronic structure of illuminated graphene and graphene nanoribbons is developed to assess the emergent non-adiabatic and non-perturbative effects on the electronic properties. Here we introduce an efficient computational scheme and illustrate its use by applying it to graphene nanoribbons in the presence of both linear and circular polarization. The interplay between confinement due to the finite sample size and laser-induced transitions is shown to lead to sharp features in the average conductance and density of states.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
October 2012
Nuclear spins are promising candidates for quantum information processing because their good isolation from the environment precludes the rapid loss of quantum coherence. Many strategies have been developed to further extend their decoherence times. Some of them make use of decoupling techniques based on the Carr-Purcell and Carr-Purcell-Meiboom-Gill pulse sequences.
View Article and Find Full Text PDFTime-reversal mirrors have been successfully implemented for various kinds of waves propagating in complex media. In particular, acoustic waves in chaotic cavities exhibit a refocalization that is extremely robust against external perturbations or the partial use of the available information. We develop a semiclassical approach in order to quantitatively describe the refocusing signal resulting from an initially localized wave packet.
View Article and Find Full Text PDFEfficient simulations of quantum evolutions of spin-1/2 systems are relevant for ensemble quantum computation as well as in typical NMR experiments. We propose an efficient method to calculate the dynamics of an observable provided that the initial excitation is "local." It resorts to a single entangled pure initial state built as a superposition, with random phases, of the pure elements that compose the mixture.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
August 2006
We study the decay rate of the Loschmidt echo or fidelity in a chaotic system under a time-dependent perturbation V(q,t) with typical strength Planck's/tau(v) . The perturbation represents the action of an uncontrolled environment interacting with the system, and is characterized by a correlation length xi(0) and a correlation time tau(0). For small perturbation strengths or rapid fluctuating perturbations, the Loschmidt echo decays exponentially with a rate predicted by the Fermi "golden rule," 1/approximately tau =tau(c)/tau(v)(2), where tau(c) approximately min[tau(0), xi(0)/upsilon] and upsilon is the typical particle velocity.
View Article and Find Full Text PDFQuantum information processing relies on coherent quantum dynamics for a precise control of its basic operations. A swapping gate in a two-spin system exchanges the degenerate states |(up arrow, down arrow)> and |(down arrow, up arrow)>. In NMR, this is achieved turning on and off the spin-spin interaction b=DeltaE that splits the energy levels and induces an oscillation with a natural frequency DeltaE/Planck's.
View Article and Find Full Text PDFWe have modified the polarization echo (PE) sequence through the incorporation of Lee-Goldburg cross polarization steps to quench the 1H-1H dipolar dynamics. In this way, the 13C becomes an ideal local probe to inject and detect polarization in the proton system. This improvement made possible the observation of the local polarization P(00)(t) and polarization echoes in the interphenyl proton of the liquid crystal N-(4-methoxybenzylidene)-4-butylaniline.
View Article and Find Full Text PDFManifestations of quantum coherence in the electronic conductance through nearly closed quantum dots in the Coulomb-blockade regime are addressed. We show that quantum coherent tunneling processes explain some puzzling statistical features of the conductance peak heights observed in recent experiments at low temperatures. We employ the constant interaction model and the random matrix theory to model the quantum dot electronic interactions and its single-particle statistical fluctuations, taking full account of the finite decay width of the quantum dot levels.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
May 2002
The Loschmidt echo (LE) measures the ability of a system to return to the initial state after a forward quantum evolution followed by a backward perturbed one. It has been conjectured that the echo of a classically chaotic system decays exponentially, with a decay rate given by the minimum between the width Gamma of the local density of states and the Lyapunov exponent. As the perturbation strength is increased one obtains a crossover between both regimes.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
April 2002
We study the time evolution of two wave packets prepared at the same initial state, but evolving under slightly different Hamiltonians. For chaotic systems, we determine the circumstances that lead to an exponential decay with time of the wave packet overlap function. We show that for sufficiently weak perturbations, the exponential decay follows a Fermi golden rule, while by making the difference between the two Hamiltonians larger, the characteristic exponential decay time becomes the Lyapunov exponent of the classical system.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
April 2002
Classical chaotic dynamics is characterized by exponential sensitivity to initial conditions. Quantum mechanics, however, does not show this feature. We consider instead the sensitivity of quantum evolution to perturbations in the Hamiltonian.
View Article and Find Full Text PDFWe study the decoherence of a one-particle system, whose classical correspondent is chaotic, when it evolves coupled to a weak quenched environment. This is done by analytical evaluation of the Loschmidt echo (i.e.
View Article and Find Full Text PDF