Objective: The major challenge for contemporary dentistry is restoration of missing teeth; currently, dental implantation is the treatment of choice in this circumstance. In the present study, we assessed the interaction between implants and Dental Pulp Stem Cells (DPSCs) in vitro by means of 3D cell culture in order to better simulate physiological conditions.
Methods: Sorted CD34+ DPSCs were seeded onto dental implants having either a rough surface (TriVent) or one coated with a ceramic layer mimicking native bone (TiUnite).
Objectives: Stem cells have the ability to rescue and/or repair injured tissue. In humans, it is possible to isolate different types of stem cells from the body. Among these, dental pulp stem cells (DPSCs) are relatively easily obtainable and exhibit high plasticity and multipotential capabilities.
View Article and Find Full Text PDFAdult mesenchymal stem cells, such as dental pulp stem cells, are of great interest for cell-based tissue engineering strategies because they can differentiate into a variety of tissue-specific cells, above all, into osteoblasts. In recent years, epigenetic studies on stem cells have indicated that specific histone alterations and modifying enzymes play essential roles in cell differentiation. However, although several studies have reported that valproic acid (VPA)-a selective inhibitor of histone deacetylases (HDAC)-enhances osteoblast differentiation, data on osteocalcin expression-a late-stage marker of differentiation-are limited.
View Article and Find Full Text PDF