Publications by authors named "Pasquale Voce"

Indoleamine 2,3-dioxygenase 1 (IDO1) is a single chain oxidoreductase that catalyzes tryptophan degradation to kynurenine. In cancer, it exerts an immunosuppressive function as part of an acquired mechanism of immune escape. Recently, we demonstrated that IDO1 expression is significantly higher in all thyroid cancer histotypes compared with normal thyroid and that its expression levels correlate with T regulatory (Treg) lymphocyte densities in the tumor microenvironment.

View Article and Find Full Text PDF

Various tissue-specific antibodies have been attached to nanoparticles to obtain targeted delivery. In particular, nanodelivery systems with selectivity for breast, prostate and cancer tissue have been developed. Here, we have developed a nanodelivery system that targets the thyroid gland.

View Article and Find Full Text PDF

Context: Indoleamine 2,3-dioxygenase 1 (IDO1) is a single chain oxidoreductase that catalyzes tryptophan degradation to kynurenine. In cancer, it appears to exert an immunosuppressive function as part of an acquired mechanism of immune escape mediated by the inhibition of lymphocyte proliferation and survival and by the induction of FoxP3+ T regulatory cells.

Objective: The objective of the study was to evaluate IDO1 expression in thyroid carcinoma and demonstrate its immunosuppressive function in the context of thyroid tumors.

View Article and Find Full Text PDF

RET gene rearrangements (RET/PTCs) represent together with BRAF point mutations the two major groups of mutations involved in papillary thyroid carcinoma (PTC) initiation and progression. In this review, we will examine the mechanisms involved in RET/PTC-induced thyroid cell transformation. In detail, we will summarize the data on the molecular mechanisms involved in RET/PTC formation and in its function as a dominant oncogene, on the activated signal transduction pathways and on the induced gene expression modifications.

View Article and Find Full Text PDF

Background: Novel molecularly targeted drugs are undergoing preclinical and clinical testing to assess their efficacy against refractory thyroid carcinomas. The multikinase inhibitor Sunitinib has been shown to inhibit the kinase activity of the RET oncogene and reduce proliferation in differentiated thyroid cancer cells harboring the RET/PTC rearrangement. In this study, we evaluated its effects in human cell lines derived from differentiated (TPC-1) and anaplastic (8505C, CAL-62, and C643) thyroid cancers.

View Article and Find Full Text PDF

Sunitinib is a multikinase inhibitor approved for use in some human solid malignancies, including renal clear cell and gastrointestinal stromal cancer, and under investigation for many other neoplasias. In many preclinical cancer models sunitinib has shown anti-angiogenic and antitumor effects, acting mainly by inhibiting the activity of pro-angiogenic growth factor receptors. However, a percentage of tumors develop resistance to this treatment.

View Article and Find Full Text PDF
Article Synopsis
  • Thyroid cancer rates have spiked over the past 30 years, with most cases being differentiated thyroid carcinomas (DTC), which have a good prognosis, exhibiting only a 15% rate of recurrence post-treatment.
  • Medullary thyroid carcinoma is more aggressive, leading to poorer outcomes, especially when diagnosed at advanced stages.
  • Recent advancements in understanding cancer's molecular mechanisms have led to new treatment strategies, particularly the use of small-molecule tyrosine kinase inhibitors, which show promising results in clinical trials for advanced thyroid cancers.
View Article and Find Full Text PDF