Network disruption is pivotal in understanding the robustness and vulnerability of complex networks, which is instrumental in devising strategies for infrastructure protection, epidemic control, cybersecurity, and combating crime. In this paper, with a particular focus on disrupting criminal networks, we proposed to impose a within-the-largest-connected-component constraint in a continuous batch removal disruption process. Through a series of experiments on a recently released Sicilian Mafia network, we revealed that the constraint would enhance degree-based methods while weakening betweenness-based approaches.
View Article and Find Full Text PDFDespite the huge importance that the centrality metrics have in understanding the topology of a network, too little is known about the effects that small alterations in the topology of the input graph induce in the norm of the vector that stores the node centralities. If so, then it could be possible to avoid re-calculating the vector of centrality metrics if some minimal changes occur in the network topology, which would allow for significant computational savings. Hence, after formalising the notion of centrality, three of the most basic metrics were herein considered (i.
View Article and Find Full Text PDFInt J Environ Res Public Health
September 2021
This study analyses the influence of different area per player (A; 75, 98 and 131 m) on the average metabolic power (MP) and other soccer-related performance variables in relation to the positional roles. We recruited 19 non-professional male soccer players (25.2 ± 6.
View Article and Find Full Text PDFData collected in criminal investigations may suffer from issues like: (i) incompleteness, due to the covert nature of criminal organizations; (ii) incorrectness, caused by either unintentional data collection errors or intentional deception by criminals; (iii) inconsistency, when the same information is collected into law enforcement databases multiple times, or in different formats. In this paper we analyze nine real criminal networks of different nature (i.e.
View Article and Find Full Text PDFCompared to other types of social networks, criminal networks present particularly hard challenges, due to their strong resilience to disruption, which poses severe hurdles to Law-Enforcement Agencies (LEAs). Herein, we borrow methods and tools from Social Network Analysis (SNA) to (i) unveil the structure and organization of Sicilian Mafia gangs, based on two real-world datasets, and (ii) gain insights as to how to efficiently reduce the Largest Connected Component (LCC) of two networks derived from them. Mafia networks have peculiar features in terms of the links distribution and strength, which makes them very different from other social networks, and extremely robust to exogenous perturbations.
View Article and Find Full Text PDFBackground And Objective: Patients with End- Stage Kidney Disease (ESKD) have a unique cardiovascular risk. This study aims at predicting, with a certain precision, death and cardiovascular diseases in dialysis patients.
Methods: To achieve our aim, machine learning techniques have been used.
Graph robustness-the ability of a graph to preserve its connectivity after the loss of nodes and edges-has been extensively studied to quantify how social, biological, physical, and technical systems withstand to external damages. In this paper, we prove that graph robustness can be quickly estimated through the Randic index, a parameter introduced in chemistry to study organic compounds. We prove that Erdos-Renyj (ER) graphs are a good specimen of robust graphs because they lack of a clear modular structure; we derive an analytical expression for the Randic index of ER graphs and use ER graphs as an effective term of comparison to decide about graph robustness.
View Article and Find Full Text PDFUnderstanding the dynamics behind group formation and evolution in social networks is considered an instrumental milestone to better describe how individuals gather and form communities, how they enjoy and share the platform contents, how they are driven by their preferences/tastes, and how their behaviors are influenced by peers. In this context, the notion of compactness of a social group is particularly relevant. While the literature usually refers to compactness as a measure to merely determine how much members of a group are similar among each other, we argue that the mutual trustworthiness between the members should be considered as an important factor in defining such a term.
View Article and Find Full Text PDF