Publications by authors named "Pasquale Fulvio"

To combat water scarcity in remote areas around the world, adsorption-based atmospheric water harvesting (AWH) has been proposed as a technology that can be used alongside existing water production capabilities. However, commonly used adsorbents either have low water adsorption loadings or are difficult to regenerate. In this work, we developed two novel hierarchical silica-salt composites that both exhibit high water adsorption loadings under dry and humid conditions.

View Article and Find Full Text PDF
Article Synopsis
  • - The study analyzed engineered carbon molecular sieves (CMSs) with unique pore structures for their ability to adsorb gases like CO, CH, water, and acetone at varied temperatures and pressures, finding that they outperform standard BPL carbon in CO adsorption.
  • - Carboxen 1005 was particularly effective due to its ultramicropores, though BPL carbon showed better acetone uptake thanks to its higher oxygen content, which enhances interactions with polar substances.
  • - The heats of adsorption were determined using the Clausius-Clapeyron equation, confirming the CMSs' superior performance for CO and CH, even as BPL carbon maintained an advantage for acetone.
View Article and Find Full Text PDF

Porous materials have already manifested their unique properties in a number of fields. Generally, all porous materials are in a solid state other than liquid, in which molecules are closely packed without porosity. "Porous" and "liquid" seem like antonyms.

View Article and Find Full Text PDF

Ordered mesoporous carbons (OMCs) have demonstrated great potential in catalysis, and as supercapacitors and adsorbents. Since the introduction of the organic-organic self-assembly approach in 2004/2005 until now, the direct synthesis of OMCs is still limited to the wet processing of phenol-formaldehyde polycondensation, which involves soluble toxic precursors, and acid or alkali catalysts, and requires multiple synthesis steps, thus restricting the widespread application of OMCs. Herein, we report a simple, general, scalable and sustainable solid-state synthesis of OMCs and nickel OMCs with uniform and tunable mesopores (∼4-10 nm), large pore volumes (up to 0.

View Article and Find Full Text PDF

Metal-organic frameworks (MOFs) represent a new family of microporous materials; however, microporous-mesoporous hierarchical MOF materials have been less investigated because of the lack of simple, reliable methods to introduce mesopores to the crystalline microporous particles. State-of-the-art MOF hierarchical materials have been prepared by ligand extension methods or by using a template, resulting in intrinsic mesopores of longer ligands or replicated pores from template agents, respectively. However, mesoporous MOF materials obtained through ligand extension often collapse in the absence of guest molecules, which dramatically reduces the size of the pore aperture.

View Article and Find Full Text PDF

The hydrogenation of levulinic acid has been studied using Ru supported on ordered mesoporous carbons (OMCs) prepared by soft-templating. P- and S-containing acid groups were introduced by postsynthetic functionalization before the addition of 1 % Ru by incipient wetness impregnation. These functionalities and the reaction conditions mediate the activity and selectivity of the levulinic acid hydrogenation.

View Article and Find Full Text PDF

Proton transfer across single-layer graphene proceeds with large computed energy barriers and is therefore thought to be unfavourable at room temperature unless nanoscale holes or dopants are introduced, or a potential bias is applied. Here we subject single-layer graphene supported on fused silica to cycles of high and low pH, and show that protons transfer reversibly from the aqueous phase through the graphene to the other side where they undergo acid-base chemistry with the silica hydroxyl groups. After ruling out diffusion through macroscopic pinholes, the protons are found to transfer through rare, naturally occurring atomic defects.

View Article and Find Full Text PDF

It is well known that room temperature ionic liquids (RTILs) often adopt a charge-separated layered structure, i.e. with alternating cation- and anion-rich layers, at electrified interfaces.

View Article and Find Full Text PDF

Postcombustion CO2 capture has become a key component of greenhouse-gas reduction as anthropogenic emissions continue to impact the environment. We report a one-step synthesis of porous carbon materials using a series of task-specific ionic liquids for the adsorption of CO2 . By varying the structure of the ionic liquid precursor, we were able to control pore architecture and surface functional groups of the carbon materials in this one-step synthesis process leading to adsorbents with high CO2 sorption capacities (up to 4.

View Article and Find Full Text PDF

While most supercapacitors are limited in their performance by the stability of the electrolyte, using neat ionic liquids (ILs) as the electrolyte can expand the voltage window and temperature range of operation. In this study, ILs with bis(trifluoromethylsulfonyl)imide (Tf2N) as the anion were investigated as the electrolyte in onion-like carbon-based electrochemical capacitors. To probe the influence of cations on the electrochemical performance of supercapacitors, three different cations were used: 1-ethyl-3-methylimidazolium, 1-hexyl-3-methylimidazolium and 1,6-bis(3-methylimidazolium-1-yl).

View Article and Find Full Text PDF

This work reports thermodynamic and electrostatic parameters for fused silica/water interfaces containing cm(2)-sized graphene ranging from a single layer of pristine graphene to defected graphene. Second harmonic generation (SHG) measurements carried out at pH 7 indicate that the surface charge density of the fused silica/water interface containing the defected graphene (-0.009(3) to -0.

View Article and Find Full Text PDF

Metal-free N-doped carbons with controllable pore texture were derived from carbonization of ionic liquid and served as catalysts for oxygen reduction reaction (ORR) with an activity comparable to that of Pt/C. The investigation shows that both the ORR activity and kinetics are strongly correlated with the pore size distribution.

View Article and Find Full Text PDF

Hierarchical nanoporous nitrogen-doped carbons were prepared from task specific ionic liquids having a bis-imidazolium motif linked with various organic groups. While ethyl chains linking the imidazolium ions afforded microporous-mesoporous carbons, long or aromatic groups resulted in microporous samples.

View Article and Find Full Text PDF

A template-free synthesis of a hierarchical microporous-mesoporous metal-organic framework (MOF) of zinc(II) 2,5-dihydroxy-1,4-benzenedicarboxylate (Zn-MOF-74) is reported. The surface morphology and porosity of the bimodal materials can be modified by etching the pore walls with various synthesis solvents for different reaction times. This template-free strategy enables the preparation of stable frameworks with mesopores exceeding 15 nm, which was previously unattained in the synthesis of MOFs by the ligand-extension method.

View Article and Find Full Text PDF

A porous, nitrogen-doped carbonaceous free-standing membrane (TFMT-550) is prepared by a facile template-free method using letrozole as an intermediate to a triazole-functionalized-triazine framework, followed by carbonization. Such adsorption/diffusion membranes exhibit good separation performance of CO2 over N2 and surpassing the most recent Robeson upper bound. An exceptional ideal CO2 /N2 permselectivity of 47.

View Article and Find Full Text PDF

Fluid/solid interfaces containing single-layer graphene are important in the areas of chemistry, physics, biology, and materials science, yet this environment is difficult to access with experimental methods, especially under flow conditions and in a label-free manner. Herein, we demonstrate the use of second harmonic generation to quantify the interfacial free energy at the fused silica/single-layer graphene/water interface at pH 7 and under conditions of flowing aqueous electrolyte solutions ranging in NaCl concentrations from 10(-4) to 10(-1) M. Our analysis reveals that single-layer graphene reduces the interfacial free energy density of the fused silica/water interface by a factor of up to 7, which is substantial given that many interfacial processes, including those that are electrochemical in nature, are exponentially sensitive to interfacial free energy density.

View Article and Find Full Text PDF

The nanoscale interactions of room temperature ionic liquids (RTILs) at uncharged (graphene) and charged (muscovite mica) solid surfaces were evaluated with high resolution X-ray interface scattering and fully atomistic molecular dynamics simulations. At uncharged graphene surfaces, the imidazolium-based RTIL ([bmim(+)][Tf(2)N(-)]) exhibits a mixed cation/anion layering with a strong interfacial densification of the first RTIL layer. The first layer density observed via experiment is larger than that predicted by simulation and the apparent discrepancy can be understood with the inclusion of, dominantly, image charge and π-stacking interactions between the RTIL and the graphene sheet.

View Article and Find Full Text PDF

An equimolar mixture of 1-methyl-1-propylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([C3mpy][Tf2N]), 1-methyl-1-butylpiperidinium bis(trifluoromethylsulfonyl)imide ([C4mpip][Tf2N]) was investigated by classic molecular dynamics (MD) simulation. Differential scanning calorimetry (DSC) measurements verified that the binary mixture exhibited lower glass transition temperature than either of the pure room-temperature ionic liquids (RTILs). Moreover, the binary mixture gave rise to higher conductivity than the neat RTILs at lower temperature range.

View Article and Find Full Text PDF

Carbon materials have attracted intense interests as electrode materials for electrochemical capacitors, because of their high surface area, electrical conductivity, chemical stability and low cost. Activated carbons produced by different activation processes from various precursors are the most widely used electrodes. Recently, with the rapid growth of nanotechnology, nanostructured electrode materials, such as carbon nanotubes and template-synthesized porous carbons have been developed.

View Article and Find Full Text PDF

We show that graphene chemical vapor deposition growth on copper foil using methane as a carbon source is strongly affected by hydrogen, which appears to serve a dual role: an activator of the surface bound carbon that is necessary for monolayer growth and an etching reagent that controls the size and morphology of the graphene domains. The resulting growth rate for a fixed methane partial pressure has a maximum at hydrogen partial pressures 200-400 times that of methane. The morphology and size of the graphene domains, as well as the number of layers, change with hydrogen pressure from irregularly shaped incomplete bilayers to well-defined perfect single layer hexagons.

View Article and Find Full Text PDF

In this paper we present a study of graphene produced by chemical vapor deposition (CVD) under different conditions with the main emphasis on correlating the thermal and electrical properties with the degree of disorder. Graphene grown by CVD on Cu and Ni catalysts demonstrates the increasing extent of disorder at low deposition temperatures as revealed by the Raman peak ratio, IG/ID. We relate this ratio to the characteristic domain size, La, and investigate the electrical and thermal conductivity of graphene as a function of La.

View Article and Find Full Text PDF

A novel strategy for tailoring the adsorption and structural properties of ionic liquid derived carbons has been developed. By changing the carbonization temperature and ratios of ionic liquids (ILs) containing a cross-linkable anion, such as 1-butyl-3-methylimidazolium tricyanomethanide [BMIm][C(CN)(3)] and 1-ethyl-3-methylimidazolium tetracyanoborate [EMIm][B(CN)(4)], boron and nitrogen-rich carbons with slit-like pores and specific surface areas exceeding 500 m(2) g(-1) have been prepared. Furthermore, the nitrogen-rich carbons exhibit high adsorption capacity for CO(2) adsorption and selectivity for CO(2)/N(2) separation.

View Article and Find Full Text PDF

Mesoporous carbon catalyst supports are attractive due to their wide chemical stability while potentially increasing mass-transport through and providing a path for larger molecules to access catalytic sites. Herein we report the synthesis of a phosphorylated mesoporous carbon solid-acid catalyst characterized by NH(3)-TPD and isopropanol dehydration.

View Article and Find Full Text PDF