In this study, the effects of different sizes of reinforcing particles on the corrosion behaviour and mechanical properties of aluminium (Al)-based composites produced by spark plasma sintering (SPS) are analysed. In the study, the effects of SPS parameters, including electrical power, applied pressure and sintering temperature, on the consolidation process and microstructure evolution of the composite are closely investigated. The results reveal a nuanced relationship between the sintering conditions and the properties of the particles, which in turn determine the sintering dynamics and the formation of the microstructural features.
View Article and Find Full Text PDFRotary friction welding is one of the most crucial techniques for joining different parts in advanced industries. Experimentally measuring the history of thermomechanical and microstructural parameters of this process can be a significant challenge and incurs high costs. To address these challenges, the finite element method was used to simulate thermomechanical and microstructural aspects of the welding of identical superalloy Inconel 718 tubes.
View Article and Find Full Text PDFIn response to the growing demand for high-strength and high-toughness materials in industries such as aerospace and automotive, there is a need for metal matrix composites (MMCs) that can simultaneously increase strength and toughness. The mechanical properties of MMCs depend not only on the content of reinforcing elements, but also on the architecture of the composite (shape, size, and spatial distribution). This paper focuses on the design configurations of MMCs, which include both the configurations resulting from the reinforcements and the inherent heterogeneity of the matrix itself.
View Article and Find Full Text PDFIn this study, the effect of employing ZnO/Acalypha Indica leaf extract (ZAE) on the energy absorption of a coated portable solar cooker has been examined using an experimental setup. A prototypical model has been developed to corroborate in associating an investigative outcome per constituents of the experiments. The studied heat transfer process in ZAE is stable for harsh conditions.
View Article and Find Full Text PDFThe deformation behaviour of bimodal sized Al O /Al nanocomposites were investigated by hot compression tests conducted in the temperature range 350-500°C and strain rates of 0.001, 0.01 and 0.
View Article and Find Full Text PDF