The anandamide monounsaturated analogue oleoylethanolamide (OEA) acts as satiety signal released from enterocytes upon the ingestion of dietary fats to prolong the interval to the next meal. This effect, which requires intact vagal fibers and intestinal PPAR-alpha receptors, is coupled to the increase of c-fos and oxytocin mRNA expression in neurons of the paraventricular nucleus (PVN) and is prevented by the intracerebroventricular administration of a selective oxytocin antagonist, thus suggesting a necessary role of oxytocinergic neurotransmission in the pro-satiety effect of OEA. By brain microdialysis and immunohistochemistry, in this study we demonstrate that OEA treatment can stimulate oxytocin neurosecretion from the PVN and enhance oxytocin expression at both axonal and somatodendritic levels of hypothalamic neurons.
View Article and Find Full Text PDFDeficits in glutamate neurotransmission and mitochondrial functions were detected in the frontal cortex (FC) and hippopcampus (HIPP) of aged 3×Tg-Alzheimer's disease (AD) mice, compared with their wild type littermates (non-Tg). In particular, basal levels of glutamate and vesicular glutamate transporter 1 (VGLUT1) expression were reduced in both areas. Cortical glutamate release responded to K(+) stimulation, whereas no peak release was observed in the HIPP of mutant mice.
View Article and Find Full Text PDFOleoylethanolamide (OEA) is a biologically active lipid amide that is released by small-intestinal enterocytes during the absorption of dietary fat and inhibits feeding by engaging the nuclear receptor, peroxisome proliferator-activated receptor-alpha (PPAR-alpha). Previous studies have shown that the anorexic effects of systemically administered OEA require the activation of sensory afferents of the vagus nerve. The central circuits involved in mediating OEA-induced hypophagia remain unknown.
View Article and Find Full Text PDFObservational studies in humans suggest that exposure to marijuana and other cannabis-derived drugs produces a wide range of subjective effects on mood tone and emotionality. These observations have their counterpart in animal studies, showing that cannabinoid agonists strongly affect emotional reactivity in directions that vary depending on dose and context. Based on these evidence, the activation of central CB(1) receptor has emerged as potential target for the development of antianxiety and antidepressant therapies.
View Article and Find Full Text PDFThe goal of our study was to assess the monoaminergic changes in locus coeruleus (LC) and dorsal raphe nucleus (DRN) following noradrenaline (NA) depletion. Seven days after a single N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) intraperitoneal administration in mice, we observed a decrease of NA in both the LC and DRN, as well as in prefrontal cortex (PFC) and hippocampus (HIPP). Moreover, an increase of serotonin (5-HT) and 5-hydroxyindolacetic acid (5-HIAA) was detected at LC level, while no change was found in DRN.
View Article and Find Full Text PDFRationale: We have previously reported that cocaine self-administration is facilitated in male rats not residing in the test chambers (Non Resident rats) relative to rats living in the test chambers at all times (Resident rats). Surprisingly, the opposite was found for heroin.
Materials And Methods: We predicted that, when given access to both cocaine and heroin on alternate days, Non Resident rats would take more cocaine relative to heroin than Resident rats.
Rationale: The endocannabinoid system plays a crucial role in the control of emotionality and recent clinical findings have shown that heavy prenatal exposure to cannabis is significantly associated with self-reported anxiety symptoms in exposed children. However, the long-term neurobehavioral consequences of in utero exposure to low-moderate doses of cannabinoid compounds have never been investigated.
Objective: The objective of this study was to investigate whether perinatal exposure to moderate doses of the active constituent of cannabis, the CB(1) cannabinoid receptor agonist delta-9-tetrahydrocannabinol (THC), influences the emotional reactivity of rat offspring.