Objective: To describe age-specific prostate-specific antigen (PSA) distributions and resulting prostate cancer diagnoses that arise from population-wide opportunistic PSA testing.
Patients And Methods: Over 8 million PSA tests were performed on >1.4 million Norwegian men from 2000 to 2020.
This study aimed to investigate how prolonged storage of adult retinal pigment epithelial (ARPE-19) cell sheets affects cell metabolism, morphology, viability, and phenotype. ARPE-19 cell sheets were stored at three temperatures (4 °C, 16 °C, and 37 °C) for three weeks. Metabolic status and morphology of the cells were monitored by sampling medium and examining cells by phase-contrast microscopy, respectively, throughout the storage period.
View Article and Find Full Text PDFPurpose: To investigate the feasibility of using Optisol-GS as a convenient, xenogeneic-free alternative for storage of cultured human limbal epithelial cells (HLECS) for use in treatment of limbal stem cell deficiency (LSCD). In the present study, we compared storage of cultured HLEC using the conventional hypothermic Optisol-GS storage method at 4°C versus storage at 23°C (room temperature).
Materials And Methods: HLECs were cultured for three weeks on amniotic membrane (AM), transferred to polypropylene containers and stored in Optisol-GS for 4 days at 23°C and 4°C.
Purpose: Transplantation of limbal stem cells is a promising therapy for limbal stem cell deficiency. Limbal cells can be harvested from either a healthy part of the patient's eye or the eye of a donor. Small explants are less likely to inflict injury to the donor site.
View Article and Find Full Text PDFStorage of human retinal pigment epithelium (hRPE) can contribute to the advancement of cell-based RPE replacement therapies. The present study aimed to improve the quality of stored hRPE cultures by identifying storage medium additives that, alone or in combination, contribute to enhancing cell viability while preserving morphology and phenotype. hRPE cells were cultured in the presence of the silk protein sericin until pigmentation.
View Article and Find Full Text PDFPurpose: The development of a suitable storage method for retinal pigment epithelium (RPE) is necessary in the establishment of future RPE replacement therapy, and storage temperature has proven to be pivotal for cell survival. ARPE-19, a widely used model for RPE, has been shown to yield the greatest number of viable cells when stored at 16°C compared to other storage temperatures. In this study, we analyze the gene expression profile of cultured ARPE-19 cells after seven days of storage at different temperatures in an effort to predict the gene-level consequences of storage of RPE transplants.
View Article and Find Full Text PDFPurpose: Storage of cultured human oral keratinocytes (HOK) allows for transportation of cultured transplants to eye clinics worldwide. In a previous study, one-week storage of cultured HOK was found to be superior with regard to viability and morphology at 12°C compared to 4°C and 37°C. To understand more of how storage temperature affects cell phenotype, gene expression of HOK before and after storage at 4°C, 12°C, and 37°C was assessed.
View Article and Find Full Text PDFRestoration of the retinal pigment epithelial (RPE) cells to prevent further loss of vision in patients with age-related macular degeneration represents a promising novel treatment modality. Development of RPE transplants, however, requires up to 3 months of cell differentiation. We explored whether the silk protein sericin can induce maturation of primary human retinal pigment epithelial (hRPE) cells.
View Article and Find Full Text PDFThe aim of the present study was to investigate the molecular mechanisms underlying activation of cell death pathways using genome-wide transcriptional analysis in human limbal epithelial cell (HLEC) cultures following conventional hypothermic storage in Optisol-GS. Three-week HLEC cultures were stored in Optisol-GS for 2, 4, and 7 days at 4 °C. Partek Genomics Suite software v.
View Article and Find Full Text PDFPurpose. Replacement of the diseased retinal pigment epithelium (RPE) with cells capable of performing the specialized functions of the RPE is the aim of cell replacement therapy for treatment of macular degenerative diseases. A storage method for RPE is likely to become a prerequisite for the establishment of such treatment.
View Article and Find Full Text PDFIntroduction: There is increasing evidence that retinal pigment epithelium (RPE) can be used to treat age-related macular degeneration, one of the leading causes of blindness worldwide. However, the best way to store RPE to enable worldwide distribution is unknown. We investigated the effects of supplementing our previously published storage method with seven additives, attempting to improve the number of viable adult retinal pigment epithelial (ARPE)-19 cells after storage.
View Article and Find Full Text PDFBackground: To objectively measure changes in nuclear morphology and cell distribution following induction of apoptosis.
Methods: A spontaneously immortalized retinal pigment epithelial cell line (ARPE-19) was cultured for three days in DMEM/F12 with 10% fetal bovine serum followed by 24 hours incubation in staurosporine to induce apoptosis. Cells that were not incubated in staurosporine served as control.
Purpose. The establishment of future retinal pigment epithelium (RPE) replacement therapy is partly dependent on the availability of tissue-engineered RPE cells, which may be enhanced by the development of suitable storage methods for RPE. This study investigates the effect of different storage temperatures on the viability, morphology, and phenotype of cultured RPE.
View Article and Find Full Text PDF