Publications by authors named "Pasotti L"

The global race against antimicrobial resistance requires novel antimicrobials that are not only effective in killing specific bacteria, but also minimize the emergence of new resistances. Recently, CRISPR/Cas-based antimicrobials were proposed to address killing specificity with encouraging results. However, the emergence of target sequence mutations triggered by Cas-cleavage was identified as an escape strategy, posing the risk of generating new antibiotic-resistance gene (ARG) variants.

View Article and Find Full Text PDF

Introduction: Plant-pathogen interaction is an inexhaustible source of information on how to sustainably control diseases that negatively affect agricultural production. is a root-knot nematode (RKN), representing a pest for many crops, including tomato (). RKNs are a global threat to agriculture, especially under climate change, and RNA technologies offer a potential alternative to chemical nematicides.

View Article and Find Full Text PDF

The administration of to dairy cows exerts beneficial effects on dry matter intake, lactation performance, and milk composition, but the rationale behind their efficacy is still poorly understood. In this work, we sought to establish whether cellulases and xylanases, among the enzymes secreted by , are involved in the positive effect exerted by on ruminal performance. We took advantage of two isogenic strains, only differing in the secretion levels of those two enzymes.

View Article and Find Full Text PDF
Article Synopsis
  • Synthetic circuit design is essential for creating microbes that can respond to environmental changes, and having a good parts toolkit is important for scaling up these designs.
  • The study introduces a new engineered dCas9 (sadCas9) for CRISPR interference, which is smaller and more specific, and illustrates its application in over 20 different synthetic circuits, showing they can effectively modulate gene expression and function as intended.
  • The researchers observed unexpected results in circuit performance, like variances in the dynamic range and shape of output curves, attributed to complex interactions among components, highlighting the need to consider these effects in future circuit designs.
View Article and Find Full Text PDF

Engineering sustainable bioprocesses that convert abundant waste into fuels is pivotal for efficient production of renewable energy. We previously engineered an Escherichia coli strain for optimized bioethanol production from lactose-rich wastewater like concentrated whey permeate (CWP), a dairy effluent obtained from whey valorization processes. Although attractive fermentation performances were reached, significant improvements are required to eliminate recombinant plasmids, antibiotic resistances and inducible promoters, and increase ethanol tolerance.

View Article and Find Full Text PDF

The intertwined adoption of synthetic biology and 3D bioprinting has the potential to improve different application fields by fabricating engineered living materials (ELMs) with unnatural genetically-encoded sense & response capabilities. However, efforts are still needed to streamline the fabrication of sensing ELMs compatible with field use and improving their functional complexity. To investigate these two unmet needs, we adopted a workflow to reproducibly construct bacterial ELMs with synthetic biosensing circuits that provide red pigmentation as visible readout in response to different proof-of-concept chemical inducers.

View Article and Find Full Text PDF
Article Synopsis
  • CRISPR and CRISPRi systems have transformed genetic engineering by allowing precise gene editing and regulation through customizable guide RNAs (sgRNAs).
  • CRISPRi can function as logic inverters that repress specific genes, proving useful in bacterial synthetic biology for creating complex information processing circuits.
  • Researchers optimized the performance of CRISPRi modules to reduce cell burden while enhancing their effectiveness, demonstrating their ability to improve existing genetic circuits and develop new logic gates.
View Article and Find Full Text PDF

CRISPRi-mediated gene regulation allows simultaneous control of many genes. However, highly specific sgRNA-promoter binding is, alone, insufficient to achieve independent transcriptional regulation of multiple targets. Indeed, due to competition for dCas9, the repression ability of one sgRNA changes significantly when another sgRNA becomes expressed.

View Article and Find Full Text PDF

In this paper, for the first time, a triple-mode scan using electromagnetic waves, in the shape of millimeter waves, and ultrasound waves, to obtain B-mode and quasistatic elastography images of a phantom of human breast tissues is shown. A homogeneous phantom composed of nontoxic, low-cost and easy-to-handle materials (i.e.

View Article and Find Full Text PDF

Whole-body physiologically based pharmacokinetic (WB-PBPK) models have become an important tool in drug development, as they enable characterization of pharmacokinetic profiles across different organs based on physiological (systems-specific) and physicochemical (drug-specific) properties. However, it remains unclear which data are needed for accurate predictions when applying the approach to novel candidate molecules progressing into the clinic. In this work, as case study, we investigated the predictive performance of WB-PBPK models both for prospective and retrospective evaluation of the pharmacokinetics of ethambutol, considering scenarios that reflect different stages of development, including settings in which the data are limited to in vitro experiments, in vivo preclinical data, and when some clinical data are available.

View Article and Find Full Text PDF

Whey permeate (WP) is a lactose-rich waste effluent, generated during cheese manufacturing and further valorization steps, such as protein extraction. The production of ethanol by WP fermentation has been proposed to increase cost-competitiveness of dairy waste processing. In previous work, the Escherichia coli W strain was selected for its efficient growth in dairy waste and it was engineered to convert lactose into ethanol as the main fermentation product from WP and concentrated WP (CWP).

View Article and Find Full Text PDF

MicroRNAs, highly-conserved small RNAs, act as key regulators of many biological functions in both plants and animals by post-transcriptionally regulating gene expression through interactions with their target mRNAs. The microRNA research is a dynamic field, in which new and unconventional aspects are emerging alongside well-established roles in development and stress adaptation. A recent hypothesis states that miRNAs can be transferred from one species to another and potentially target genes across distant species.

View Article and Find Full Text PDF

Millimeter (mm)-wave imaging has been recently proposed as a new technique for breast cancer detection, based on the significant dielectric contrast between healthy and tumor tissues. Here we propose a procedure to fabricate, electromagnetically characterize and preserve realistic breast tissue-mimicking phantoms for testing mm-wave imaging prototypes. Low-cost, non-toxic and easy-to-produce mixtures made of sunflower oil, water and gelatin were prepared and their dielectric properties were for the first time measured in the (0.

View Article and Find Full Text PDF

Background: Genome-scale metabolic models (GEMs) allow predicting metabolic phenotypes from limited data on uptake and secretion fluxes by defining the space of all the feasible solutions and excluding physio-chemically and biologically unfeasible behaviors. The integration of additional biological information in genome-scale models, e.g.

View Article and Find Full Text PDF

Feedback control is ubiquitous in biological systems. It can also play a crucial role in the design of synthetic circuits implementing novel functions in living systems, to achieve self-regulation of gene expression, noise reduction, rise time decrease, or adaptive pathway control. Despite in vitro, in vivo, and ex vivo implementations have been successfully reported, the design of biological close-loop systems with quantitatively predictable behavior is still a major challenge.

View Article and Find Full Text PDF

The Drug Disease Model Resources (DDMoRe) Interoperability Framework (IOF) enables pharmacometric model encoding and execution via Model Description Language (MDL) and R language, through the ddmore package. Through its components and converter plugins, the IOF can execute pharmacometric tasks using different target tools, starting from a single MDL-encoded model. In this article, we present the WinBUGS plugin and show how its integration in the IOF enables an easy implementation of complex Bayesian workflows.

View Article and Find Full Text PDF

Background: The study of simplified, ad-hoc constructed model systems can help to elucidate if quantitatively characterized biological parts can be effectively re-used in composite circuits to yield predictable functions. Synthetic systems designed from the bottom-up can enable the building of complex interconnected devices via rational approach, supported by mathematical modelling. However, such process is affected by different, usually non-modelled, unpredictability sources, like cell burden.

View Article and Find Full Text PDF

Background: Whey permeate is a lactose-rich effluent remaining after protein extraction from milk-resulting cheese whey, an abundant dairy waste. The lactose to ethanol fermentation can complete whey valorization chain by decreasing dairy waste polluting potential, due to its nutritional load, and producing a biofuel from renewable source at the same time. Wild type and engineered microorganisms have been proposed as fermentation biocatalysts.

View Article and Find Full Text PDF

A dinuclear copper(ii) complex derived from the chiral N ligand (2S,2'S)-N,N'-(ethane-1,2-diyl)bis(2-((1-methyl-1H-imidazol-4-ylmethyl)-amino)-3-(1-trityl-1H-imidazol-4-yl)propanamide) (EHI) was synthesized and studied as a catalyst in stereoselective oxidation reactions. The ligand contains two sets of tridentate binding units, each of them giving rise to a coordination set consisting of a pair of 5- and 6-membered chelate rings, connected by an ethanediamide linker. Stereoselectivity effects were studied in the oxidations of a series of chiral l/d biogenic catechols and the pair of l/d-tyrosine methyl esters, in this case as their phenolate salts.

View Article and Find Full Text PDF

Background: Circular plasmid-mediated homologous recombination is commonly used for marker-less allelic replacement, exploiting the endogenous recombination machinery of the host. Common limitations of existing methods include high false positive rates due to mutations in counter-selection genes, and limited applicability to specific strains or growth media. Finally, solutions compatible with physical standards, such as the BioBrick™, are not currently available, although they proved to be successful in the design of other replicative or integrative plasmids.

View Article and Find Full Text PDF

The small number of molecules, unevenly distributed within an isogenic cell population, makes gene expression a noisy process, and strategies have evolved to deal with this variability in protein concentration and to limit its impact on cellular behaviors. As translational efficiency has a major impact on biological noise, a possible strategy to control noise is to regulate gene expression processes at the post-transcriptional level. In this study, fluctuations in the concentration of a green fluorescent protein were compared, at the single cell level, upon transformation of an isogenic bacterial cell population with synthetic gene circuits implementing either a transcriptional or a post-transcriptional control of gene expression.

View Article and Find Full Text PDF

Whey is an abundant by-product of cheese production process and it is considered a special waste due to its high nutritional load and hypertrophic potential. Technologies for whey valorization are available. They can convert such waste into high-value products, like whey proteins.

View Article and Find Full Text PDF

Small RNAs (sRNAs) are genetic tools for the efficient and specific tuning of target genes expression in bacteria. Inspired by naturally occurring sRNAs, recent works proposed the use of artificial sRNAs in synthetic biology for predictable repression of the desired genes. Their potential was demonstrated in several application fields, such as metabolic engineering and bacterial physiology studies.

View Article and Find Full Text PDF

The lack of a common exchange format for mathematical models in pharmacometrics has been a long-standing problem. Such a format has the potential to increase productivity and analysis quality, simplify the handling of complex workflows, ensure reproducibility of research, and facilitate the reuse of existing model resources. Pharmacometrics Markup Language (PharmML), currently under development by the Drug Disease Model Resources (DDMoRe) consortium, is intended to become an exchange standard in pharmacometrics by providing means to encode models, trial designs, and modeling steps.

View Article and Find Full Text PDF