Publications by authors named "Pasi Tavi"

Single-nuclei RNA sequencing remains a challenge for many human tissues, as incomplete removal of background signal masks cell-type-specific signals and interferes with downstream analyses. Here, we present Quality Clustering (QClus), a droplet filtering algorithm targeted toward challenging samples. QClus uses additional metrics, such as cell-type-specific marker gene expression, to cluster nuclei and filter empty and highly contaminated droplets, providing reliable filtering of samples with varying number of nuclei and contamination levels.

View Article and Find Full Text PDF

Mutations in ubiquitously expressed presenilin genes (PSENs) lead to early-onset familial Alzheimer's disease (FAD), but patients carrying the mutation also suffer from heart diseases. To elucidate the cardiac myocyte specific effects of PSEN ΔE9, we studied cardiomyocytes derived from induced pluripotent stem cells (iPSC-CMs) from patients carrying AD-causing PSEN1 exon 9 deletion (PSEN1 ΔE9). When compared with their isogenic controls, PSEN1 ΔE9 cardiomyocytes showed increased sarcoplasmic reticulum (SR) Ca leak that was resistant to blockage of ryanodine receptors (RyRs) by tetracaine or inositol-3-reseceptors (IPRs) by 2-ABP.

View Article and Find Full Text PDF

Cardiovascular disease plays a central role in the electrical and structural remodeling of the right atrium, predisposing to arrhythmias, heart failure, and sudden death. Here, we dissect with single-nuclei RNA sequencing (snRNA-seq) and spatial transcriptomics the gene expression changes in the human ex vivo right atrial tissue and pericardial fluid in ischemic heart disease, myocardial infarction, and ischemic and non-ischemic heart failure using asymptomatic patients with valvular disease who undergo preventive surgery as the control group. We reveal substantial differences in disease-associated gene expression in all cell types, collectively suggesting inflammatory microvascular dysfunction and changes in the right atrial tissue composition as the valvular and vascular diseases progress into heart failure.

View Article and Find Full Text PDF

Background: Transverse tubules (t-tubules) form gradually in the developing heart, critically enabling maturation of cardiomyocyte Ca homeostasis. The membrane bending and scaffolding protein BIN1 (bridging integrator 1) has been implicated in this process. However, it is unclear which of the various reported BIN1 isoforms are involved, and whether BIN1 function is regulated by its putative binding partners MTM1 (myotubularin), a phosphoinositide 3'-phosphatase, and DNM2 (dynamin-2), a GTPase believed to mediate membrane fission.

View Article and Find Full Text PDF

Transcriptional coactivator PGC-1α is a main regulator of cardiac energy metabolism. In addition to canonical PGC-1α1, other PGC-1α isoforms have been found to exert specific biological functions in a variety of tissues. We investigated the expression patterns and the biological effects of the non-canonical isoforms in the heart.

View Article and Find Full Text PDF

The m.3243A>G mutation in mitochondrial is one of the most common pathogenic mitochondrial DNA mutations in humans. The clinical manifestations are highly heterogenous and the causes for the drastic clinical variability are unknown.

View Article and Find Full Text PDF

The pro-nociceptive role of glutamate in the CNS in migraine pathophysiology is well established. Glutamate, released from trigeminal afferents, activates second order nociceptive neurons in the brainstem. However, the function of peripheral glutamate receptors in the trigeminovascular system suggested as the origin site for migraine pain, is less known.

View Article and Find Full Text PDF

The hypoxia-inducible nuclear-encoded mitochondrial protein NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 4-like 2 (NDUFA4L2) has been demonstrated to decrease oxidative phosphorylation and production of reactive oxygen species in neonatal cardiomyocytes, brain tissue and hypoxic domains of cancer cells. Prolonged local hypoxia can negatively affect skeletal muscle size and tissue oxidative capacity. Although skeletal muscle is a mitochondrial rich, oxygen sensitive tissue, the role of NDUFA4L2 in skeletal muscle has not previously been investigated.

View Article and Find Full Text PDF

Introduction: Age-related macular degeneration (AMD) is the leading, cause of sight loss in the elderly in the Western world. Most patients remain still without any treatment options. The targeting of Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), a transcription co-factor, is a putative therapy against AMD.

View Article and Find Full Text PDF

Aims: Biological sex has fundamental effects on mammalian heart physiology and pathogenesis. While it has been established that female sex is a protective factor against most cardiovascular diseases (CVDs), this beneficial effect may involve pathways associated with cardiac energy metabolism. Our aim was to elucidate the role of transcriptional coactivator PGC-1α in sex dimorphism of heart failure (HF) development.

View Article and Find Full Text PDF

Molecular mechanisms involved in cardiac remodelling are not fully understood. To study the role of vascular endothelial growth factor receptor 1 (VEGFR-1) signaling in left ventricular hypertrophy (LVH) and heart failure, we used a mouse model lacking the intracellular VEGFR-1 tyrosine kinase domain (VEGFR-1 TK) and induced pressure overload with angiotensin II infusion. Using echocardiography (ECG) and immunohistochemistry, we evaluated pathological changes in the heart during pressure overload and measured the corresponding alterations in expression level and phosphorylation of interesting targets by deep RNA sequencing and Western blot, respectively.

View Article and Find Full Text PDF
Article Synopsis
  • Low levels of 25-hydroxyvitamin D (25-OH-D), indicating vitamin D deficiency, are linked to obesity, but the reasons behind this connection are still not fully understood.
  • Research shows that obesity reduces the expression of the enzyme CYP2R1, which is crucial for converting vitamin D into its active form, in both mice and humans.
  • Weight loss, particularly from gastric bypass surgery, can reverse this suppression of CYP2R1 in adipose tissue in humans, but the effects on other tissues and the exact mechanisms remain unclear.
View Article and Find Full Text PDF

In Parkinson`s disease (PD), the loss of dopaminergic (DA) neurons in the substantia nigra pars compacta is associated with Lewy bodies arising from the accumulation of alpha-synuclein protein which leads ultimately to movement impairment. While PD has been considered a disease of the DA neurons, a glial contribution, in particular that of astrocytes, in PD pathogenesis is starting to be uncovered. Here, we report findings from astrocytes derived from induced pluripotent stem cells of LRRK2 G2019S mutant patients, with one patient also carrying a GBA N370S mutation, as well as healthy individuals.

View Article and Find Full Text PDF

Aims: Oxidized phospholipids and microRNAs (miRNAs) are increasingly recognized to play a role in endothelial dysfunction driving atherosclerosis. NRF2 transcription factor is one of the key mediators of the effects of oxidized phospholipids, but the gene regulatory mechanisms underlying the process remain obscure. Here, we investigated the genome-wide effects of oxidized phospholipids on transcriptional gene regulation in human umbilical vein endothelial cells and aortic endothelial cells with a special focus on miRNAs.

View Article and Find Full Text PDF

Dietary fats are essential for cardiac function. The metabolites of fats known as fatty acids provide most of the energy for cardiac tissue, serve as building blocks for membranes and regulate important signaling cascades. Despite their importance, excess fat intake can cause cardiac dysfunction.

View Article and Find Full Text PDF

Accumulating evidence suggests that constitutively active Nrf2 has a pivotal role in cancer as it induces pro-survival genes that promote cancer cell proliferation and chemoresistance. The mechanisms of Nrf2 dysregulation and functions in cancer have not been fully characterized. Here, we jointly analyzed the Broad-Novartis Cancer Cell Line Encyclopedia (CCLE) and the Cancer Genome Atlas (TCGA) multi-omics data in order to identify cancer types where Nrf2 activation is present.

View Article and Find Full Text PDF
Article Synopsis
  • - Skeletal muscle weakness in rheumatoid arthritis (RA) patients worsens their quality of life and work ability, but the molecular mechanisms behind this weakness are not well understood.
  • - The study identifies that oxidative stress leads to harmful modifications on actin, a key protein in muscle contraction, which prevents proper actin polymerization and force production.
  • - By pinpointing specific areas on the actin molecule affected by oxidative changes, the research suggests new potential treatments to enhance muscle function in RA patients.
View Article and Find Full Text PDF

Low 25-hydroxyvitamin D levels correlate with the prevalence of diabetes; however, the mechanisms remain uncertain. Here, we show that nutritional deprivation-responsive mechanisms regulate vitamin D metabolism. Both fasting and diabetes suppressed hepatic cytochrome P450 (CYP) 2R1, the main vitamin D 25-hydroxylase responsible for the first bioactivation step.

View Article and Find Full Text PDF

Age-related macular degeneration (AMD) is a multi-factorial disease that is the leading cause of irreversible and severe vision loss in the developed countries. It has been suggested that the pathogenesis of dry AMD involves impaired protein degradation in retinal pigment epithelial cells (RPE). RPE cells are constantly exposed to oxidative stress that may lead to the accumulation of damaged cellular proteins, DNA and lipids and evoke tissue deterioration during the aging process.

View Article and Find Full Text PDF

Despite epidemiological evidence showing that diets rich in whole grains reduce the risk of chronic life-style related diseases, biological mechanisms for these positive effects are mostly unknown. Increased 5-aminovaleric acid betaine (5-AVAB) levels in plasma and metabolically active tissues such as heart have been associated with consumption of diets rich in whole grains. However, biological effects of 5-AVAB are poorly understood.

View Article and Find Full Text PDF

Aims: Heart failure (HF) is associated with drastic changes in metabolism leading to a cardiac energy deficiency well as maladaptive changes in multiple other tissues. It is still unclear which of these changes originates from cardiomyocyte metabolic remodelling or whether they are induced secondarily by systemic factors. Our aim here was to induce cardiac restricted metabolic changes mimicking those seen in HF and to characterize the associated metabolite changes in the heart, circulation, and peripheral tissues.

View Article and Find Full Text PDF

Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have emerged as a promising experimental tool for translational heart research and drug development. However, their usability as a human adult cardiomyocyte model is limited by their functional immaturity. Our aim is to analyse quantitatively those characteristics and how they differ from adult CMs.

View Article and Find Full Text PDF

In embryonic cardiomyocytes, sarcoplasmic reticulum (SR)-derived Ca release is required to induce Ca oscillations for contraction and to control cardiac development through Ca -activated pathways. Here, our aim was to study how SR Ca release regulates cytosolic and nuclear Ca distribution and the subsequent effects on the Ca -dependent localization of class IIa histone deacetylases (HDAC) and cardiac-specific gene expression in embryonic cardiomyocytes. Confocal microscopy was used to study changes in Ca -distribution and localization of immunolabeled HDAC4 and HDAC5 upon changes in SR Ca release in mouse embryonic cardiomyocytes.

View Article and Find Full Text PDF

Phospholipids, such as 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (PAPC), are the major components of cell membranes. Their exposure to reactive oxygen species creates oxidized phospholipids, which predispose to the development of chronic inflammatory diseases and metabolic disorders through endothelial activation and dysfunction. Although the effects of oxidized PAPC (oxPAPC) on endothelial cells have been previously studied, the underlying molecular mechanisms evoking biological responses remain largely unknown.

View Article and Find Full Text PDF