Background: Understanding how trees develop their root systems is crucial for the comprehension of how wildland and urban forest ecosystems plastically respond to disturbances such as harvest, fire, and climate change. The interplay between the endogenously determined root traits and the response to environmental stimuli results in tree adaptations to biotic and abiotic factors, influencing stability, carbon allocation, and nutrient uptake. Combining the three-dimensional structure of the root system, with root morphological trait information promotes a robust understanding of root function and adaptation plasticity.
View Article and Find Full Text PDFOur study delved into the relationship between root-associated fungi, gene expression and plant morphology in Norway spruce cuttings derived from both slow-and fast-growing trees. We found no clear link between the gene expression patterns of adventitious roots and the growth phenotype, suggesting no fundamental differences in the receptiveness to fungal symbionts between the phenotypes. Interestingly, saplings from slow-growing parental trees exhibited a higher richness of ectomycorrhizal species and larger roots.
View Article and Find Full Text PDFHabitat fragmentation could potentially affect tree architecture and allometry. Here, we use ground surveys of terrestrial LiDAR in Central Amazonia to explore the influence of forest edge effects on tree architecture and allometry, as well as forest biomass, 40 years after fragmentation. We find that young trees colonising the forest fragments have thicker branches and architectural traits that optimise for light capture, which result in 50% more woody volume than their counterparts of similar stem size and height in the forest interior.
View Article and Find Full Text PDFDue to their long lifespan, trees and bushes develop higher order of branches in a perennial manner. In contrast to a tall tree, with a clearly defined main stem and branching order, a bush is shorter and has a less apparent main stem and branching pattern. To address the developmental basis of these two forms, we studied several naturally occurring architectural variants in silver birch ().
View Article and Find Full Text PDFCurrently, plant phenomics is considered the key to reducing the genotype-to-phenotype knowledge gap in plant breeding. In this context, breakthrough imaging technologies have demonstrated high accuracy and reliability. The X-ray computed tomography (CT) technology can noninvasively scan roots in 3D; however, it is urgently required to implement high-throughput phenotyping procedures and analyses to increase the amount of data to measure more complex root phenotypic traits.
View Article and Find Full Text PDFBackground: Jubaea chilensis (Molina) Baillon, is a uniquely large palm species endemic to Chile. It is under threatened status despite its use as an ornamental species throughout the world. This research seeks to identify the phyllotaxis of the species based on an original combination of non-destructive data acquisition technologies, namely Magnetic Resonance Imaging (MRI) in saplings and young individuals and Terrestrial Laser Scanning (TLS) in standing specimens, and a novel analysis methodology.
View Article and Find Full Text PDFBackground: Woody plants (trees and shrubs) play an important role in terrestrial ecosystems, but their size and longevity make them difficult subjects for traditional experiments. In the last 20 years functional-structural plant models (FSPMs) have evolved: they consider the interplay between plant modular structure, the immediate environment and internal functioning. However, computational constraints and data deficiency have long been limiting factors in a broader application of FSPMs, particularly at the scale of forest communities.
View Article and Find Full Text PDFBackground And Aims: Terrestrial LiDAR scanning (TLS) data are of great interest in forest ecology and management because they provide detailed 3-D information on tree structure. Automated pipelines are increasingly used to process TLS data and extract various tree- and plot-level metrics. With these developments comes the risk of unknown reliability due to an absence of systematic output control.
View Article and Find Full Text PDFMany herbaceous plants feature remarkably regular arrangements of lateral organs along the central axis. These phyllotactic patterns are generated by a constant divergence angle between successive buds (or whorls thereof) that first appears at the shoot apircal meristem and is maintained across later ontogentic stages when it can be observed at the macroscopic scale. Do the branches along a tree trunk exhibit similar patterns? Here we use branch skeleton data derived from terrestrial laser scans to empirically estimate the distributions of the divergence angles between successive branches along the trunks of mature European beech, Norway spruce, and Scots pine trees.
View Article and Find Full Text PDFThis paper introduces a prototype of ClothFace technology, a battery-free textile-based handwriting recognition platform that includes an e-textile antenna and a 10 × 10 array of radio frequency identification (RFID) integrated circuits (ICs), each with a unique ID. Touching the textile platform surface creates an electrical connection from specific ICs to the antenna, which enables the connected ICs to be read with an external UHF (ultra-haigh frequency) RFID reader. In this paper, the platform is demonstrated to recognize handwritten numbers 0-9.
View Article and Find Full Text PDFLocal neighbourhood interactions are considered a main driver for biodiversity-productivity relationships in forests. Yet, the structural responses of individual trees in species mixtures and their relation to crown complementarity remain poorly understood. Using a large-scale forest experiment, we studied the impact of local tree species richness and structural variability on above-ground wood volume allocation patterns and crown morphology.
View Article and Find Full Text PDFBiomed Opt Express
July 2018
Photoacoustic imaging enables the imaging of soft biological tissue with combined optical contrast and ultrasound resolution. One of the targets of interest is tissue vasculature. However, the photoacoustic images may not directly provide the information on, for example, vasculature structure.
View Article and Find Full Text PDFBackground And Aims: Functional-structural plant models (FSPMs) allow simulation of tree crown development as the sum of modular (e.g. shoot-level) responses triggered by the local environmental conditions.
View Article and Find Full Text PDFWe present an algorithm and an implementation to insert broadleaves or needleleaves into a quantitative structure model according to an arbitrary distribution, and a data structure to store the required information efficiently. A structure model contains the geometry and branching structure of a tree. The purpose of this work is to offer a tool for making more realistic simulations of tree models with leaves, particularly for tree models developed from terrestrial laser scanning (TLS) measurements.
View Article and Find Full Text PDFDetailed and realistic tree form generators have numerous applications in ecology and forestry. For example, the varying morphology of trees contributes differently to formation of landscapes, natural habitats of species, and eco-physiological characteristics of the biosphere. Here, we present an algorithm for generating morphological tree "clones" based on the detailed reconstruction of the laser scanning data, statistical measure of similarity, and a plant growth model with simple stochastic rules.
View Article and Find Full Text PDF