A multifunctional setup based on the absolute integrating sphere method for measuring luminous flux of light emitting diodes (LEDs) is presented. The total luminous flux in 2pi and 4pi geometries and partial luminous flux with variable cone angle can be measured with the same custom-made integrating sphere. The number and area of ports and baffles of the sphere was minimized.
View Article and Find Full Text PDFA straightforward method for estimating the position of the optical receiving plane of a spherical, dome-shaped diffuser from its spatial responsivity data is presented. The method is tested with two diffusers, types J1002 and J1015 from CMS Schreder, commonly used in solar UV spectroradiometers. The shift of the receiving plane from its nominal position determines a potential measurement error that occurs when measurements and calibrations are carried out with sources at different distances from the diffuser.
View Article and Find Full Text PDFThe energy transfer integral between radiating rectangular and detecting circular parallel plates having nonideal angular characteristics is solved for modeling the distance dependence of the irradiance signal. The equation derived for the irradiance signal, which is called the modified inverse-square law, depends on the position, shape, size, and angular characteristics of the light source and the detector. We apply the new model equation to the calibration of a spectroradiometer to determine accurately the distance offsets, which fix the positions of the effective receiving apertures of diffusers used in the entrance optics of spectroradiometers.
View Article and Find Full Text PDF