Publications by authors named "Pashupati R Adhikari"

Silicon's potential as a lithium-ion battery (LIB) anode is hindered by the reactivity of the lithium silicide (Li Si) interface. This study introduces an innovative approach by alloying silicon with boron, creating boron/silicon (BSi) nanoparticles synthesized via plasma-enhanced chemical vapor deposition. These nanoparticles exhibit altered electronic structures as evidenced by optical, structural, and chemical analysis.

View Article and Find Full Text PDF

Because of their high theoretical energy density, metal-CO batteries based on Li, Na, or K have attracted increasing attention recently for meeting the growing demands of CO recycling and conversion into electrical energy. However, the scarcity of active anode material resources, high cost, as well as safety concerns of Li, Na, and K create obstacles for practical applications. Herein, we demonstrate for the first time a high-efficiency (η = 77.

View Article and Find Full Text PDF

Lithium-sulfur batteries (LSBs) demonstrate potential as next-generation energy storage systems due to the high theoretical capacity and energy density of the sulfur cathode (1672 mAh g and 2600 W h kg, respectively) in addition to the low-cost, natural abundance, and environmentally benign characteristics of sulfur. However, the insulating nature of sulfur requires an efficient conductive and porous host material such as three-dimensional carbon nanotubes (3D CNTs). Identifying parameters that provide high conduction pathways and short diffusion lengths for Li-ions within the CNT structure is essential for a highly efficient CNT-S cathode in a LSB.

View Article and Find Full Text PDF

Reverse electrowetting-on-dielectric (REWOD)-based energy harvesting has been studied over the last decade as a novel technique of harvesting energy by actuating liquid droplet(s) utilizing applied mechanical modulation. Much prior research in REWOD has relied on planar electrodes, which by its geometry possess a limited surface area. In addition, most of the prior REWOD works have applied a high bias voltage to enhance the output power that compromises the concept of self-powering wearable motion sensors in human health monitoring applications.

View Article and Find Full Text PDF

This paper presents a motion-sensing device with the capability of harvesting energy from low-frequency motion activities. Based on the high surface area reverse electrowetting-on-dielectric (REWOD) energy harvesting technique, mechanical modulation of the liquid generates an AC signal, which is modeled analytically and implemented in Matlab and COMSOL. A constant DC voltage is produced by using a rectifier and a DC-DC converter to power up the motion-sensing read-out circuit.

View Article and Find Full Text PDF

Increasing demand for self-powered wearable sensors has spurred an urgent need to develop energy harvesting systems that can reliably and sufficiently power these devices. Within the last decade, reverse electrowetting-on-dielectric (REWOD)-based mechanical motion energy harvesting has been developed, where an electrolyte is modulated (repeatedly squeezed) between two dissimilar electrodes under an externally applied mechanical force to generate an AC current. In this work, we explored various combinations of electrolyte concentrations, dielectrics, and dielectric thicknesses to generate maximum output power employing REWOD energy harvester.

View Article and Find Full Text PDF