The TGFβ signaling pathway is known for its pleiotropic functions in a plethora of biological processes. In melanoma, TGFβ signaling promotes invasiveness and metastasis formation. However, its involvement in the response to therapy is controversial.
View Article and Find Full Text PDFSynthetic mRNA produced by in vitro transcription (ivt mRNA) is the active pharmaceutical ingredient of approved anti-COVID-19 vaccines and of many drugs under development. Such synthetic mRNA typically contains several hundred bases of non-coding "untranslated" regions (UTRs) that are involved in the stabilization and translation of the mRNA. However, UTRs are often complex structures, which may complicate the entire production process.
View Article and Find Full Text PDFChemotherapies are standard care for most cancer types. Pyrimidine analogs including 5-fluorouracil, cytosine arabinoside, 5-azacytidine, and gemcitabine are effective drugs that are utilized as part of a number of anticancer regimens. However, their lack of cell-specificity results in severe side effects.
View Article and Find Full Text PDFDuring recent years, RNA therapeutics have begun to make a substantial impact in the clinic, with the approval of the siRNA-based therapeutic Patisiran in 2018, and of the two mRNA SARS-CoV-2 vaccines, BNT162b2 and mRNA-1273 in 2021. A key to the success of these therapeutics lies in the lipid-based delivery system. The therapeutic RNAs are encapsulated in lipid nanoparticles (LNPs), which protect against enzymatic degradation and efficiently deliver the RNA across the cell membrane into the cytosol.
View Article and Find Full Text PDFThe recent success of the synthetic mRNA-based anti-COVID-19 vaccines has demonstrated the broad potential of the mRNA platform for applications in medicine, thanks to the combined efforts of a small community that has vastly improved key determinants such as design and formulation of synthetic mRNA during the past three decades. However, the cost of production and sensitivity to enzymatic degradation are still limiting the broader application of synthetic mRNA for therapeutic applications. The increased interest in mRNA-based technologies has spurred a renaissance for circular RNA (circRNA), as the lack of free 5' and 3' ends substantially increases resistance against enzymatic degradation in biological systems and does not require expensive cap analogs, as translation is controlled by an Internal Ribosome Entry Site (IRES) sequence.
View Article and Find Full Text PDFCancer-associated immune dysfunction is a major challenge for effective therapies. The emergence of antibodies targeting tumor cell-surface antigens led to advancements in the treatment of hematopoietic malignancies, particularly blood cancers. Yet their impact is constrained against tumors of hematopoietic origin manifesting in the skin.
View Article and Find Full Text PDFDiscrimination between hematopoietic stem cells and leukemic stem cells remains a major challenge for acute myeloid leukemia immunotherapy. CAR T cells specific for the CD117 antigen can deplete malignant and healthy hematopoietic stem cells before consolidation with allogeneic hematopoietic stem cell transplantation in absence of cytotoxic conditioning. Here we exploit non-viral technology to achieve early termination of CAR T cell activity to prevent incoming graft rejection.
View Article and Find Full Text PDFBackground: Extracorporeal photopheresis (ECP) has emerged as a systemic first-line immunomodulatory therapy in leukaemic cutaneous T-cell lymphoma (L-CTCL) and is now beginning to be utilized in other T-cell-mediated diseases. Although ECP has been used for nearly 30 years, its mechanisms of action are not sufficiently understood, and biomarkers for response are scarce.
Objectives: We aimed to investigate the immunomodulatory effects of ECP on cytokine secretion patterns in patients with L-CTCL, to help elucidate its mechanism of action.
The first worldwide article reporting that injections of synthetic nonreplicating mRNA could be used as a vaccine, which originated from a French team located in Paris, was published in the European Journal of Immunology (EJI) in 1993. It relied on work conducted by several research groups in a handful of countries since the 1960s, which put forward the precise description of eukaryotic mRNA and the method to reproduce this molecule in vitro as well as how to transfect it into mammalian cells. Thereafter, the first industrial development of this technology began in Germany in 2000, with the founding of CureVac, which stemmed from another description of a synthetic mRNA vaccine published in EJI in 2000.
View Article and Find Full Text PDFNanoparticles of different sizes formulated with unmodified RNA and Protamine differentially engage Toll-like Receptors (TLRs) and activate innate immune responses . Here, we report that similar differential immunostimulation that depends on the nanoparticle sizes is induced in wild type as well as in humanized mice. In addition, we found that the schedule of injections strongly affects the magnitude of the immune response.
View Article and Find Full Text PDFCancer treatment with immune checkpoint blockade (ICB) often induces immune-related adverse events (irAEs). We hypothesized that proteins coexpressed in tumors and normal cells could be antigenic targets in irAEs and herein described DITAS (discovery of tumor-associated self-antigens) for their identification. DITAS computed transcriptional similarity between lung tumors and healthy lung tissue based on single-sample gene set enrichment analysis.
View Article and Find Full Text PDFPurpose: Most chimeric antigen receptor (CAR) T-cell strategies against glioblastoma have demonstrated only modest therapeutic activity and are based on persistent gene modification strategies that have limited transgene capacity, long manufacturing processes, and the risk for uncontrollable off-tumor toxicities. mRNA-based T-cell modifications are an emerging safe, rapid, and cost-effective alternative to overcome these challenges, but are underexplored against glioblastoma.
Experimental Design: We generated mouse and human mRNA-based multifunctional T cells coexpressing a multitargeting CAR based on the natural killer group 2D (NKG2D) receptor and the proinflammatory cytokines IL12 and IFNα2 and assessed their antiglioma activity in vitro and in vivo.
RNA editing refers to non-transient RNA modifications that occur after transcription and prior to translation by the ribosomes. RNA editing is more widespread in cancer cells than in non-transformed cells and is associated with tumorigenesis of various cancer tissues. However, RNA editing can also generate neo-antigens that expose tumour cells to host immunosurveillance.
View Article and Find Full Text PDFMycosis fungoides (MF) is a type of cutaneous T-cell lymphoma. Chlormethine (CL) is recommended as first-line therapy for MF, with a major purpose to kill tumor cells through DNA alkylation. To study the extent of treatment susceptibility and tumor specificity, we investigated the gene expression of different DNA repair pathways, DNA double-stranded breaks, and tumor cell proliferation of clonal TCR Vβ+ tumor cell populations in cutaneous T-cell lymphoma skin cells on direct exposure to CL.
View Article and Find Full Text PDFBackground: Cocaine use disorder (CUD) is a global health issue with no effective treatment. Repetitive Transcranial Magnetic Stimulation (rTMS) is a recently proposed therapy for CUD.
Methods: We conducted a single-center, randomised, sham-controlled, blinded, parallel-group research with patients randomly allocated to rTMS (15 Hz) or Sham group (1:1) using a computerised block randomisation process.
As of September 2021, twenty-one anti-COVID-19 vaccines have been approved in the world. Their utilization will expedite an end to the current pandemic. Besides the usual vaccine formats that include inactivated viruses (eight approved vaccines) and protein-based vaccines (four approved vaccines), three new formats have been validated: recombinant adenovirus (six approved vaccines), DNA (one approved vaccine), and messenger RNA (mRNA, two approved vaccines).
View Article and Find Full Text PDFThe adenosine deaminase inhibitor 2'-deoxycoformycin (pentostatin, Nipent) has been used since 1982 to treat leukemia and lymphoma, but its mode of action is still unknown. Pentostatin was reported to decrease methylation of cellular RNA. We discovered that RNA extracted from pentostatin-treated cells or mice has enhanced immunostimulating capacities.
View Article and Find Full Text PDFEfficient vaccination can be achieved by injections of in vitro transcribed mRNA (ivt mRNA) coding for antigens. This vaccine format is particularly versatile and allows the production of individualised vaccines conferring, T-cell immunity against specific cancer mutations. The CDR3 hypervariable regions of immune receptors (T-cell receptor, TCR or B-cell receptor, BCR) in the context of T- or B-cell leukaemia or lymphoma are targetable and specific sequences, similar to cancer mutations.
View Article and Find Full Text PDFThe quantification of T-cell immune responses is crucial for the monitoring of natural and treatment-induced immunity, as well as for the validation of new immunotherapeutic approaches. The present study presents a simple method based on lipofection of synthetic mRNA in mononuclear cells as a method to determine in vitro T-cell responses. We compared several commercially available transfection reagents for their potential to transfect mRNA into human peripheral blood mononuclear cells and murine splenocytes.
View Article and Find Full Text PDFProtamine is a natural cationic peptide mixture mostly known as a drug for the neutralization of heparin and as a compound in formulations of slow-release insulin. Protamine is also used for cellular delivery of nucleic acids due to opposite charge-driven coupling. This year marks 60 years since the first use of Protamine as a transfection enhancement agent.
View Article and Find Full Text PDFJ Immunother Cancer
June 2021
SARS-CoV-2 infection and the resulting COVID-19 have afflicted millions of people in an ongoing worldwide pandemic. Safe and effective vaccination is needed urgently to protect not only the general population but also vulnerable subjects such as patients with cancer. Currently approved mRNA-based SARS-CoV-2 vaccines seem suitable for patients with cancer based on their mode of action, efficacy, and favorable safety profile reported in the general population.
View Article and Find Full Text PDFSézary syndrome (SS) is a rare, leukemic type of cutaneous T-cell lymphoma (CTCL), for which extracorporeal photopheresis (ECP) is a first-line therapy. Reliable biomarkers to objectively monitor the response to ECP in patients with SS are missing. We examined the quantitative and qualitative impact of ECP on natural killer (NK) cell activity in SS patients, and especially their functional ability for antibody-dependent cell-mediated cytotoxicity (ADCC).
View Article and Find Full Text PDFIn the race for a vaccine against SARS-CoV-2, the synthetic mRNA format has been shown to be the fastest one and proved to be safe and highly efficient, even at the very low dose of a few µg per injection. The mRNA vaccines are not new: vaccines that are based on attenuated mRNA viruses, such as Mumps, Measles, and Rubella, immunize by delivering their mRNAs into the cells of the vaccinated individual, who produces the viral proteins that then prime the immune response. Synthetic mRNA in liposomes can be seen as a modern, more refined, and thereby a safer version of those live attenuated RNA viruses.
View Article and Find Full Text PDF