Phys Rev Lett
August 2024
The neutron-rich unbound fluorine isotope ^{30}F_{21} has been observed for the first time by measuring its neutron decay at the SAMURAI spectrometer (RIBF, RIKEN) in the quasifree proton knockout reaction of ^{31}Ne nuclei at 235 MeV/nucleon. The mass and thus one-neutron-separation energy of ^{30}F has been determined to be S_{n}=-472±58(stat)±33(sys) keV from the measurement of its invariant-mass spectrum. The absence of a sharp drop in S_{n}(^{30}F) shows that the "magic" N=20 shell gap is not restored close to ^{28}O, which is in agreement with our shell-model calculations that predict a near degeneracy between the neutron d and fp orbitals, with the 1p_{3/2} and 1p_{1/2} orbitals becoming more bound than the 0f_{7/2} one.
View Article and Find Full Text PDFThe structure and decay of the most neutron-rich beryllium isotope, ^{16}Be, has been investigated following proton knockout from a high-energy ^{17}B beam. Two relatively narrow resonances were observed for the first time, with energies of 0.84(3) and 2.
View Article and Find Full Text PDFSubjecting a physical system to extreme conditions is one of the means often used to obtain a better understanding and deeper insight into its organization and structure. In the case of the atomic nucleus, one such approach is to investigate isotopes that have very different neutron-to-proton (N/Z) ratios than in stable nuclei. Light, neutron-rich isotopes exhibit the most asymmetric N/Z ratios and those lying beyond the limits of binding, which undergo spontaneous neutron emission and exist only as very short-lived resonances (about 10 s), provide the most stringent tests of modern nuclear-structure theories.
View Article and Find Full Text PDFThe atomic masses of ^{55}Sc, ^{56,58}Ti, and ^{56-59}V have been determined using the high-precision multireflection time-of-flight technique. The radioisotopes have been produced at RIKEN's Radioactive Isotope Beam Factory (RIBF) and delivered to the novel designed gas cell and multireflection system, which has been recently commissioned downstream of the ZeroDegree spectrometer following the BigRIPS separator. For ^{56,58}Ti and ^{56-59}V, the mass uncertainties have been reduced down to the order of 10 keV, shedding new light on the N=34 shell effect in Ti and V isotopes by the first high-precision mass measurements of the critical species ^{58}Ti and ^{59}V.
View Article and Find Full Text PDFA long-standing question in nuclear physics is whether chargeless nuclear systems can exist. To our knowledge, only neutron stars represent near-pure neutron systems, where neutrons are squeezed together by the gravitational force to very high densities. The experimental search for isolated multi-neutron systems has been an ongoing quest for several decades, with a particular focus on the four-neutron system called the tetraneutron, resulting in only a few indications of its existence so far, leaving the tetraneutron an elusive nuclear system for six decades.
View Article and Find Full Text PDFIn the last few years, there has been increasing interest in the use of Ultrahigh-Performance Fibre-Reinforced Concrete (UHPFRC) layers or jackets, which have been proved to be quite effective in strengthening applications. However, to facilitate the extensive use of UHPFRC in strengthening applications, reliable numerical models need to be developed. In the case of UHPFRC, it is common practice to perform either direct tensile or flexural tests to determine the UHPFRC tensile stress-strain models.
View Article and Find Full Text PDFA kinematically complete quasifree (p,pn) experiment in inverse kinematics was performed to study the structure of the Borromean nucleus ^{17}B, which had long been considered to have a neutron halo. By analyzing the momentum distributions and exclusive cross sections, we obtained the spectroscopic factors for 1s_{1/2} and 0d_{5/2} orbitals, and a surprisingly small percentage of 9(2)% was determined for 1s_{1/2}. Our finding of such a small 1s_{1/2} component and the halo features reported in prior experiments can be explained by the deformed relativistic Hartree-Bogoliubov theory in continuum, revealing a definite but not dominant neutron halo in ^{17}B.
View Article and Find Full Text PDFThe formation of a dineutron in the ^{11}Li nucleus is found to be localized to the surface region. The experiment measured the intrinsic momentum of the struck neutron in ^{11}Li via the (p,pn) knockout reaction at 246 MeV/nucleon. The correlation angle between the two neutrons is, for the first time, measured as a function of the intrinsic neutron momentum.
View Article and Find Full Text PDFWe report the measurement of reaction cross sections (σ_{R}^{ex}) of ^{27,29}F with a carbon target at RIKEN. The unexpectedly large σ_{R}^{ex} and derived matter radius identify ^{29}F as the heaviest two-neutron Borromean halo to date. The halo is attributed to neutrons occupying the 2p_{3/2} orbital, thereby vanishing the shell closure associated with the neutron number N=20.
View Article and Find Full Text PDFDetailed spectroscopy of the neutron-unbound nucleus ^{28}F has been performed for the first time following proton/neutron removal from ^{29}Ne/^{29}F beams at energies around 230 MeV/nucleon. The invariant-mass spectra were reconstructed for both the ^{27}F^{(*)}+n and ^{26}F^{(*)}+2n coincidences and revealed a series of well-defined resonances. A near-threshold state was observed in both reactions and is identified as the ^{28}F ground state, with S_{n}(^{28}F)=-199(6) keV, while analysis of the 2n decay channel allowed a considerably improved S_{n}(^{27}F)=1620(60) keV to be deduced.
View Article and Find Full Text PDFOne of the most exotic light neutron-rich nuclei currently accessible for experimental study is ^{40}Mg, which lies at the intersection of the nucleon magic number N=28 and the neutron drip line. Low-lying excited states of ^{40}Mg have been studied for the first time following a one-proton removal reaction from ^{41}Al, performed at the Radioactive Isotope Beam Factory of RIKEN Nishina Center with the DALI2 γ-ray array and the ZeroDegree spectrometer. Two γ-ray transitions were observed, suggesting an excitation spectrum that shows unexpected properties as compared to both the systematics along the Z=12, N≥20 Mg isotopes and available state-of-the-art theoretical model predictions.
View Article and Find Full Text PDFThe emission of neutron pairs from the neutron-rich N=12 isotones ^{18}C and ^{20}O has been studied by high-energy nucleon knockout from ^{19}N and ^{21}O secondary beams, populating unbound states of the two isotones up to 15 MeV above their two-neutron emission thresholds. The analysis of triple fragment-n-n correlations shows that the decay ^{19}N(-1p)^{18}C^{*}→^{16}C+n+n is clearly dominated by direct pair emission. The two-neutron correlation strength, the largest ever observed, suggests the predominance of a ^{14}C core surrounded by four valence neutrons arranged in strongly correlated pairs.
View Article and Find Full Text PDFQuasifree one-proton knockout reactions have been employed in inverse kinematics for a systematic study of the structure of stable and exotic oxygen isotopes at the R^{3}B/LAND setup with incident beam energies in the range of 300-450 MeV/u. The oxygen isotopic chain offers a large variation of separation energies that allows for a quantitative understanding of single-particle strength with changing isospin asymmetry. Quasifree knockout reactions provide a complementary approach to intermediate-energy one-nucleon removal reactions.
View Article and Find Full Text PDFWe report on the first observation of the unbound proton-rich nucleus 15Ne. Its ground state and first excited state were populated in two-neutron knockout reactions from a beam of 500 MeV/u 17Ne. The 15Ne ground state is found to be unbound by 2.
View Article and Find Full Text PDFThe E1 strength distribution in 68Ni has been investigated using Coulomb excitation in inverse kinematics at the R3B-LAND setup and by measuring the invariant mass in the one- and two-neutron decay channels. The giant dipole resonance and a low-lying peak (pygmy dipole resonance) have been observed at 17.1(2) and 9.
View Article and Find Full Text PDFThe coupling between bound quantum states and those in the continuum is of high theoretical interest. Experimental studies of bound drip-line nuclei provide ideal testing grounds for such investigations since they, due to the feeble binding energy of their valence particles, are easy to excite into the continuum. In this Letter, continuum states in the heaviest particle-stable Be isotope, 14Be, are studied by employing the method of inelastic proton scattering in inverse kinematics.
View Article and Find Full Text PDFIntermediate-energy Coulomb excitation measurements are performed on the N ≥ 40 neutron-rich nuclei (66,68)Fe and (64)Cr. The reduced transition matrix elements providing a direct measure of the quadrupole collectivity B(E2;2(1)(+) → 0(1)(+)) are determined for the first time in (68)Fe(42) and (64)Cr(40) and confirm a previous recoil distance method lifetime measurement in (66)Fe(40). The results are compared to state-of-the-art large-scale shell-model calculations within the full fpgd neutron orbital model space using the Lenzi-Nowacki-Poves-Sieja effective interaction and confirm the results of the calculations that show these nuclei are well deformed.
View Article and Find Full Text PDFPhys Rev Lett
November 2012
We report on direct time-of-flight based mass measurements of 16 light neutron-rich nuclei. These include the first determination of the masses of the Borromean drip-line nuclei (19)B, (22)C, and (29)F as well as that of (34)Na. In addition, the most precise determinations to date for (23)N and (31)Ne are reported.
View Article and Find Full Text PDFA new experimental technique is presented using proton-γ-γ correlations from (94)Mo(d,p)(95)Mo reactions which allows for the model-independent extraction of the photon strength function at various excitation energies using primary γ-ray decay from the quasicontinuum to individual low-lying levels. Detected particle energies provide the entrance excitation energies into the residual nucleus while γ-ray transitions from low-lying levels specify the discrete states being fed. Results strongly support the existence of the previously reported low-energy enhancement in the photon strength function.
View Article and Find Full Text PDFEstablishing how and when large N/Z values require modified or new theoretical tools is a major quest in nuclear physics. Here we report the first measurement of the lifetime of the 2(1)+ state in the near-dripline nucleus 20C. The deduced value of τ(2(1)+)=9.
View Article and Find Full Text PDFThe new, neutron-deficient, superheavy element isotope ²⁸⁵114 was produced in ⁴⁸Ca irradiations of ²⁴²Pu targets at a center-of-target beam energy of 256 MeV (E*=50 MeV). The α decay of ²⁸⁵114was followed by the sequential α decay of four daughter nuclides, 281Cn, 277Ds, 273Hs, and 269Sg. 265Rf was observed to decay by spontaneous fission.
View Article and Find Full Text PDFTreatment of human splenic B lymphocytes with the mitogen Branhamella catarrhalis (BC) and transforming growth factor-beta 1 (TGF-beta 1) induces expression of germline Ig C alpha transcripts and class switching to this isotype. To further characterize the molecular mechanism by which TGF-beta 1 and mitogenic signals regulate the expression of unrearranged C alpha 1 and C alpha 2 genes, we have characterized the promoter elements that are responsible for the transcriptional activation of their corresponding germline genes using transient expression assays. We report here that both in the I alpha 1 and the I alpha 2 regions, maximal phorbol myristate acetate (PMA) and TGF-beta 1 responsiveness of the promoters can be conferred by 327 bp spanning the transcription initiation sites and a previously identified phylogenetically conserved region.
View Article and Find Full Text PDF