In the last decade, the development of customized biodegradable scaffolds and implants has attracted increased scientific interest due to the fact that additive manufacturing technologies allow for the rapid production of implants with high geometric complexity constructed via commercial biodegradable polymers. In this study, innovative designs of tibial scaffold in form of bone-brick configuration were developed to fill the bone gap utilizing advanced architected materials and bio-inspired diffusion canals. The architected materials and canals provide high porosity, as well as a high surface area to volume ratio in the scaffold facilitating that way in the tissue regeneration process and in withstanding the applied external loads.
View Article and Find Full Text PDFSelective laser melting (SLM) is one of the most reliable and efficient procedures for Metal Additive Manufacturing (AM) due to the capability to produce components with high standards in terms of dimensional accuracy, surface finish, and mechanical behavior. In the past years, the SLM process has been utilized for direct manufacturing of fully functional mechanical parts in various industries, such as aeronautics and automotive. Hence, it is essential to investigate the SLM procedure for the most commonly used metals and alloys.
View Article and Find Full Text PDF