Publications by authors named "Paschal A Oude Weernink"

Membrane-permeable 8-(4-chlorophenylthio)-2'-O-methyl cyclic AMP (8-pCPT-2'-O-Me-cAMP) has been shown to specifically activate cAMP-regulated Epac proteins, without direct effects on protein kinase A and protein kinase G. During isometric tension measurements in thoracic aortic rings from Wistar rats, we observed that 8-pCPT-2'-O-Me-cAMP selectively induced a rightward shift of the concentration response curve for the thromboxane mimetic U46619, without altering the contractile response to noradrenaline. We hypothesised that 8-pCPT-2'-O-Me-cAMP and similar compounds may function as direct thromboxane receptor antagonists.

View Article and Find Full Text PDF

Signaling by the B cell antigen receptor (BCR) is essential for B lymphocyte homeostasis and immune function. In immature B cells, ligation of the BCR promotes growth arrest and apoptosis, and BCR-driven balancing between pro-apoptotic extracellular signal-regulated kinase 1 and 2 (ERK1/2) and anti-apoptotic phosphoinositide 3-kinase-dependent Akt seems to define the final cellular apoptotic response. Dysfunction of these late BCR signaling events can lead to the development of immunological diseases.

View Article and Find Full Text PDF

The activity state of cofilin, which controls actin dynamics, is driven by a phosphorylation-dephosphorylation cycle. Phosphorylation of cofilin by LIM-kinases results in its inactivation, a process supported by 14-3-3zeta and reversed by dephosphorylation by slingshot phosphatases. Here we report on a novel cellular function for the phosphorylation-dephosphorylation cycle of cofilin.

View Article and Find Full Text PDF

Exchange protein activated by cyclic AMP (Epac) -- a cyclic AMP-activated guanine nucleotide exchange factor for Ras-like GTPases -- has emerged as a novel mediator of pivotal processes in the cardiovascular system, including cellular calcium handling, hypertrophy, integrin-mediated cell adhesion, establishment of cell polarity, cell migration and endothelial barrier functioning. Epac controls these various cellular responses apparently by signaling to several effector proteins. Spatiotemporal dynamics in the subcellular distribution of Epac-driven signaling networks probably determine the net outcome of cyclic AMP signaling in the cardiovascular system.

View Article and Find Full Text PDF

Hydrolysis of phosphatidylcholine by phospholipase D (PLD) leads to the generation of the versatile lipid second messenger, phosphatidic acid (PA), which is involved in fundamental cellular processes, including membrane trafficking, actin cytoskeleton remodeling, cell proliferation and cell survival. PLD activity can be dramatically stimulated by a large number of cell surface receptors and is elaborately regulated by intracellular factors, including protein kinase C isoforms, small GTPases of the ARF, Rho and Ras families and, particularly, by the phosphoinositide, phosphatidylinositol 4,5-bisphosphate (PIP(2)). PIP(2) is well known as substrate for the generation of second messengers by phospholipase C, but is now also understood to recruit and/or activate a variety of actin regulatory proteins, ion channels and other signaling proteins, including PLD, by direct interaction.

View Article and Find Full Text PDF

G protein-coupled receptors (GPCRs) control a variety of fundamental cellular processes by regulating phospholipid signaling pathways. Essential for signaling by a large number of receptors is the hydrolysis of the membrane phosphoinositide PIP(2) by phospholipase C (PLC) into the second messengers IP(3) and DAG. Many receptors also stimulate phospholipase D (PLD), leading to the generation of the versatile lipid, phosphatidic acid.

View Article and Find Full Text PDF

The activation of the Ras-related GTPase R-Ras, which has been implicated in the regulation of various cellular functions, by G protein-coupled receptors (GPCRs) was studied in HEK-293 cells stably expressing the M3 muscarinic acetylcholine receptor (mAChR), which can couple to several types of heterotrimeric G proteins. Activation of the receptor induced a very rapid and transient activation of R-Ras. Studies with inhibitors and activators of various signaling pathways indicated that R-Ras activation by the M3 mAChR is dependent on cyclic AMP formation but is independent of protein kinase A.

View Article and Find Full Text PDF

The membrane phospholipid, phosphatidylinositol 4,5-bisphosphate (PIP(2)), plays a critical role in various, apparently very different cellular processes. As precursor for second messengers generated by phospholipase C isoforms and class I phosphoinositide 3-kinases, PIP(2) is indispensable for cellular signaling by membrane receptors. In addition, PIP(2) directly affects the localization and activity of many cellular proteins via specific interaction with unique phosphoinositide-binding domains and thereby regulates actin cytoskeletal dynamics, vesicle trafficking, ion channel activity, gene expression and cell survival.

View Article and Find Full Text PDF

We have recently reported that two typical Gs-coupled receptors, the beta2-adrenergic receptor and the receptor for prostaglandin E1, stimulate phospholipase C-epsilon (PLC-epsilon) and increase intracellular Ca2+ concentration ([Ca2+]i) in HEK-293 cells and N1E-115 neuroblastoma cells, respectively, by a pathway involving Epac1, a cAMP-activated and Rap-specific guanine nucleotide exchange factor (GEF), and the GTPase Rap2B. Here we have demonstrated that these Gs-coupled receptors use this pathway to activate H-Ras and the extracellular signal-regulated kinases 1 and 2 (ERK1/2). Specifically, agonist activation of the receptors resulted in activation of H-Ras and ERK1/2.

View Article and Find Full Text PDF

We recently reported that several Gs-coupled receptors stimulate phospholipase C (PLC)-epsilon via increased formation of cyclic AMP and subsequent activation of the small GTPase Rap2B by the cyclic AMP-activated exchange factor Epac1. Here we show by studies in HEK-293 and N1E-115 neuroblastoma cells that this stimulation induced by Gs-coupled receptors or the direct adenylyl cyclase activator, forskolin, is potently inhibited by Gi-coupled receptors, known to inhibit cyclic AMP formation. PLC inhibition by the overexpressed M2 muscarinic receptor and the endogenously expressed sphingosine-1-phosphate and delta-opioid receptors was fully pertussis toxin-sensitive and accompanied by a reduction in Rap2B activation induced by Gs-coupled receptors.

View Article and Find Full Text PDF

Receptor tyrosine kinase regulation of phospholipase C-epsilon (PLC-epsilon), which is under the control of Ras-like and Rho GTPases, was studied with HEK-293 cells endogenously expressing PLC-coupled epidermal growth factor (EGF) receptors. PLC and Ca(2+) signaling by the EGF receptor, which activated both PLC-gamma1 and PLC-epsilon, was specifically suppressed by inactivation of Ras-related GTPases with clostridial toxins and expression of dominant-negative Rap2B. EGF induced rapid and sustained GTP loading of Rap2B, binding of Rap2B to PLC-epsilon, and Rap2B-dependent translocation of PLC-epsilon to the plasma membrane.

View Article and Find Full Text PDF

Type I phosphatidylinositol 4-phosphate 5-kinase (PIP5K) catalyzes the formation of the phospholipid, phosphatidylinositol 4,5-bisphosphate (PIP(2)), which is implicated in many cellular processes. The Rho GTPases, RhoA and Rac1, have been shown previously to activate PIP5K and to bind PIP5K. Three type I PIP5K isoforms (Ialpha,Ibeta, and Igamma) have been identified; however, it is unclear whether these isoforms are differentially or even sequentially regulated by Rho GTPases.

View Article and Find Full Text PDF

Stimulation of phospholipase C (PLC) by G(q)-coupled receptors such as the M(3) muscarinic acetylcholine receptor (mAChR) is caused by direct activation of PLC-beta enzymes by Galpha(q) proteins. We have recently shown that G(s)-coupled receptors can stimulate PLC-epsilon, apparently via formation of cyclic AMP and activation of the Ras-related GTPase Rap2B. Here we report that PLC stimulation by the M(3) mAChR expressed in HEK-293 cells also involves, in part, similar mechanisms.

View Article and Find Full Text PDF