The fall armyworm Spodoptera frugiperda is a major polyphagous pest in agriculture and little is known on how this insect can adapt to the diverse and potentially toxic plant allelochemicals that they ingest or to insecticides. To investigate the involvement of nuclear receptors in the response of S. frugiperda to its chemical environment, we cloned SfHR96, a nuclear receptor orthologous to the mammalian xenobiotic receptors, pregnane X receptor (PXR) and constitutive androstane receptor (CAR).
View Article and Find Full Text PDFBackground: To reduce rates of synthetic insecticide applications, natural product alternatives and synergists are needed. A study has been made of the toxicity of ethanolic senescent leaf extracts (SLEs) of Jatropha gossypifolia and Melia azedarach on larvae of the noctuid pest Spodoptera frugiperda. Their effects as syngergists and inhibitors of several enzyme activities are also reported.
View Article and Find Full Text PDFBackground: Resistance to the pyrethroid insecticide deltamethrin has been a growing problem in the management of Helicoverpa armigera (Hübner) pest populations in West Africa. Detoxification by P450 enzymes appears to be a major mechanism of resistance, but the genes responsible for resistance are unknown.
Results: First, it was shown that deltamethrin resistance in strains from Burkina Faso (Kaya) and from Spain (Seville) were suppressible by piperonyl butoxide and by trichlorophenyl propynyl ether, thus indicating a major role of P450 enzyme(s) in resistance.
The effect of xenobiotics (phenobarbital and atrazine) on the expression of Drosophila melanogaster CYP genes encoding cytochromes P450, a gene family generally associated with detoxification, was analyzed by DNA microarray hybridization and verified by real-time RT-PCR in adults of both sexes. Only a small subset of the 86 CYP genes was significantly induced by the xenobiotics. Eleven CYP genes and three glutathione S-transferases (GST) genes were significantly induced by phenobarbital, seven CYP and one GST gene were induced by atrazine.
View Article and Find Full Text PDFBackground: The Lepidoptera Spodoptera frugiperda is a pest which causes widespread economic damage on a variety of crop plants. It is also well known through its famous Sf9 cell line which is used for numerous heterologous protein productions. Species of the Spodoptera genus are used as model for pesticide resistance and to study virus host interactions.
View Article and Find Full Text PDF