Publications by authors named "Pascale Mathonet"

Background: Transposome-based technologies have enabled the streamlined production of sequencer-ready DNA libraries; however, current methods are highly sensitive to the amount and quality of input nucleic acid.

Results: We describe a new library preparation technology (Nextera DNA Flex) that utilizes a known concentration of transposomes conjugated directly to beads to bind a fixed amount of DNA, and enables direct input of blood and saliva using an integrated extraction protocol. We further report results from libraries generated outside the standard parameters of the workflow, highlighting novel applications for Nextera DNA Flex, including human genome builds and variant calling from below 1 ng DNA input, customization of insert size, and preparation of libraries from short fragments and severely degraded FFPE samples.

View Article and Find Full Text PDF

Abdurins are a novel antibody-like scaffold derived from the engineering of a single isolated CH2 domain of human IgG. Previous studies established the prolonged serum half-life of Abdurins, the result of a retained FcRn binding motif. Here we present data on the construction of large, diverse, phage-display and cell-free DNA display libraries and the isolation of high affinity binders to the cancer target, membrane-bound ephrin receptor tyrosine kinase class A2 (EphA2).

View Article and Find Full Text PDF

In the decade since the human genome sequence was declared complete, the development of next generation sequencing (NGS) or "deep" sequencing to deliver cost-effective genomic sequencing has influenced advances beyond its primary application and changed the research landscape in many other areas. This review will survey recent applications of NGS which have broadened the understanding of natural antibody repertoires (the "antibodyome") and how these evolve in response to viral infection. We will also report examples where deep sequencing of binding populations, derived from both natural and synthetic repertoires, have been used to benefit antibody engineering.

View Article and Find Full Text PDF

WW domains are small β-sheet motifs that are involved in intracellular signalling through the recognition of proline-rich or phosphorylated linear peptide sequences. Here, we describe modification of this motif to provide a framework for engineering the side chains exposed on its concave surface. This non-natural scaffold incorporates an additional tryptophan, has a shorter loop 1 and supports modification of 25% of the natural protein to form a novel affinity reagent.

View Article and Find Full Text PDF

Allosteric regulation of enzyme activity is a remarkable property of many biological catalysts. Up till now, engineering an allosteric regulation into native, unregulated enzymes has been achieved by the creation of hybrid proteins in which a natural receptor, whose conformation is controlled by ligand binding, is inserted into an enzyme structure. Here, we describe a monomeric enzyme, TEM1-β-lactamase, that features an allosteric aminoglycoside binding site created de novo by directed-evolution methods.

View Article and Find Full Text PDF

Engineering of alternative binding sites on the surface of an enzyme while preserving the enzymatic activity would offer new opportunities for controlling the activity by binding of non-natural ligands. Loops and turns are the natural substructures in which binding sites might be engineered with this purpose. We have genetically inserted random peptide sequences into three relatively rigid and contiguous loops of the TEM-1 beta-lactamase and assessed the tolerance to insertion by the percentage of active mutants.

View Article and Find Full Text PDF

Libraries of phage-displayed beta-lactamase mutants in which up to three loops have been engineered by genetic introduction of random peptide sequences or by randomization of the wild-type sequence have been submitted to selection protocols designed to find mutants in which binding of transition metal ions to the engineered secondary binding site leads to significant effects on the enzymatic activity. A double-selection protocol was applied: The phage-displayed libraries were first selected for transition metal ions affinity by panning on IMAC support, then a second selection step was applied to isolate mutants that have retained significant catalytic activity. The analysis of the kinetic properties of mutants in the presence of nickel, copper, or zinc ions allowed isolation of a few mutants whose activity was either enhanced or inhibited by factors up to three and >10, respectively, in a metal-specific manner.

View Article and Find Full Text PDF

Highly efficient intermolecular crossing-over was observed occurring between regions of limited homology in a fd filamentous phage and a plasmid. These extraneous regions corresponded to two overlapping fragments of the beta-lactamase gene. Gene reconstitution through homologous recombination of these regions yielded a highly ampicillin-resistant phenotype in Escherichia coli while co-expression of the enzyme fragments afforded low and thermosensitive activity.

View Article and Find Full Text PDF

Rational design, usually guided by computational prediction, and selection from libraries of variants of natural proteins have been used with success in the engineering of novel non-natural receptors. Many of these engineered protein binders will find use in biotechnological, diagnostic and medical applications, sometimes in the place of natural antibodies.

View Article and Find Full Text PDF