Publications by authors named "Pascale Maillard"

Forest trees adopt effective strategies to optimize nitrogen (N) use through internal N recycling. In the context of more recurrent environmental stresses due to climate change, the question remains of whether increased frequency of drought or defoliation threatens this internal N recycling strategy. We submitted 8-year-old beech trees to 2 years of either severe drought (Dro) or manual defoliation (Def) to create a state of N starvation.

View Article and Find Full Text PDF

Knowledge of the physiological mechanisms underlying species vulnerability to drought is critical for better understanding patterns of tree mortality. Investigating plant adaptive strategies to drought should thus help to fill this knowledge gap, especially in tropical rainforests exhibiting high functional diversity. In a semi-controlled drought experiment using 12 rainforest tree species, we investigated the diversity in hydraulic strategies and whether they determined the ability of saplings to use stored non-structural carbohydrates during an extreme imposed drought.

View Article and Find Full Text PDF

Wood performs several functions to ensure tree survival and carbon allocation to a finite stem volume leads to trade-offs among cell types. It is not known to what extent these trade-offs modify functional trade-offs and if they are consistent across climates and evolutionary lineages. Twelve wood traits were measured in stems and coarse roots across 60 adult angiosperm tree species from temperate, Mediterranean and tropical climates.

View Article and Find Full Text PDF

Objectives: Carbon fixed during photosynthesis is exported from leaves towards sink organs as non-structural carbohydrates (NSC), that are a key energy source for metabolic processes in trees. In xylem, NSC are mostly stored as soluble sugars and starch in radial and axial parenchyma. The multi-functional nature of xylem means that cells possess several functions, including water transport, storage and mechanical support.

View Article and Find Full Text PDF

Premise: Nonstructural carbohydrates (NSCs) play a key role in tree performance and functioning and are stored in radial and axial parenchyma (RAP) cells. Whether this relationship is altered among species and climates or is linked to functional traits describing xylem structure (wood density) and tree stature is not known.

Methods: In a systematic review, we collated data for NSC content and the proportion of RAP in stems for 68 tree species.

View Article and Find Full Text PDF

Studying the response to drought stress of keystone epiphytes such as tank bromeliads is essential to better understand their resistance capacity to future climate change. The objective was to test whether there is any variation in the carbon, water and nutrient status among different leaf ontogenetic stages in a bromeliad rosette subjected to a gradient of drought stress. We used a semi-controlled experiment consisting in a gradient of water shortage in Aechmea aquilega and Lutheria splendens.

View Article and Find Full Text PDF

The predicted recurrence of adverse climatic events such as droughts, which disrupt nutrient accessibility for trees, could jeopardize the nitrogen (N) metabolism in forest trees. Internal tree N cycling capacities are crucial to ensuring tree survival but how the N metabolism of forest trees responds to intense, repeated environmental stress is not well known. For 2 years, we submitted 9-year-old beech (Fagus sylvatica L.

View Article and Find Full Text PDF

CO pulse-labelling experiments were performed in situ on adult beeches (Fagus sylvatica) and pines (Pinus pinaster) at different phenological stages to study seasonal and interspecific short-term dynamics and partitioning of recently assimilated carbon (C) in leaves. Polar fraction (PF, including soluble sugars, amino acids and organic acids) and starch were purified from foliage sampled during a 10-d chase period. C contents, isotopic compositions and C dynamics parameters were determined in bulk foliage, PF and starch.

View Article and Find Full Text PDF

Non-structural carbohydrates (NSC) in plant tissue are frequently quantified to make inferences about plant responses to environmental conditions. Laboratories publishing estimates of NSC of woody plants use many different methods to evaluate NSC. We asked whether NSC estimates in the recent literature could be quantitatively compared among studies.

View Article and Find Full Text PDF

Background And Aims: The carbon (C) and nitrogen (N) needed for plant growth can come either from soil N and current photosynthesis or through remobilization of stored resources. The contribution of remobilization to new organ growth on a whole-plant basis is quite well known in deciduous woody plants and evergreen conifers, but this information is very limited in broadleaf evergreen trees. This study compares the contribution of remobilized C and N to the construction of new organs in spring, and assesses the importance of different organs as C and N sources in 1-year-old potted seedlings of four ecologically distinct evergreen Mediterranean trees, namely Quercus ilex, Q.

View Article and Find Full Text PDF

Pulse-labelling of trees with stable or radioactive carbon (C) isotopes offers the unique opportunity to trace the fate of labelled CO(2) into the tree and its release to the soil and the atmosphere. Thus, pulse-labelling enables the quantification of C partitioning in forests and the assessment of the role of partitioning in tree growth, resource acquisition and C sequestration. However, this is associated with challenges as regards the choice of a tracer, the methods of tracing labelled C in tree and soil compartments and the quantitative analysis of C dynamics.

View Article and Find Full Text PDF

Trees will have to cope with increasing levels of CO(2) and ozone in the atmosphere. The purpose of this work was to assess whether the lignification process could be altered in the wood of poplars under elevated CO(2) and/or ozone. Young poplars were exposed either to charcoal-filtered air (control), to elevated CO(2) (800 μl l(-1)), to ozone (200 nl l(-1)) or to a combination of elevated CO(2) and ozone in controlled chambers.

View Article and Find Full Text PDF

The distribution of carbon (C) into whole grapevine fruiting cuttings was investigated during flower development to determine the relative contribution of inflorescence and leaf photoassimilates in the total C balance and to investigate their partitioning towards other plant organs. A (13)C labelling procedure was used to label C photoassimilates by leaves and inflorescences in grapevine. Investigations were carried out at various stages of flower/berry development, from separated cluster to fruit set, using grapevine fruiting cuttings with four leaves (Vitis vinifera L.

View Article and Find Full Text PDF

Phloem is the main pathway for transferring photosynthates belowground. In situ(13) C pulse labelling of trees 8-10 m tall was conducted in the field on 10 beech (Fagus sylvatica) trees, six sessile oak (Quercus petraea) trees and 10 maritime pine (Pinus pinaster) trees throughout the growing season. Respired (13) CO2 from trunks was tracked at different heights using tunable diode laser absorption spectrometry to determine time lags and the velocity of carbon transfer (V).

View Article and Find Full Text PDF

The study of the fate of assimilated carbon in respiratory fluxes in the field is needed to resolve the residence and transfer times of carbon in the atmosphere-plant-soil system in forest ecosystems, but it requires high frequency measurements of the isotopic composition of evolved CO2. We developed a closed transparent chamber to label the whole crown of a tree and a labelling system capable of delivering a 3-h pulse of 99% 13CO2 in the field. The isotopic compositions of trunk and soil CO2 effluxes were recorded continuously on two labelled and one control trees by a tuneable diode laser absorption spectrometer during a 2-month chase period following the late summer labelling.

View Article and Find Full Text PDF

Soil nitrogen can alter storage and remobilization of carbon and nitrogen in forest trees and affect growth responses to elevated carbon dioxide concentration ([CO(2)]). We investigated these effects in oak saplings (Quercus robur L.) exposed for two years to ambient or twice ambient [CO(2)] in combination with low- (LN, 0.

View Article and Find Full Text PDF

Changes in use of both stored and newly synthesized sources of carbon (C) and nitrogen (N) were investigated during rooting of leafy cuttings of Larix x eurolepis A. Henry. We used dual (13)C and (15)N long-term labeling of reserves of stock plants and followed isotope dilution of the labels in the cuttings to determine the respective proportions of C and N derived from stock plant reserves (Q(C,old), Q(N,old)) and from newly synthesized sources (Q(C,new), Q(N,new)).

View Article and Find Full Text PDF