Publications by authors named "Pascale M N Tiger"

Mucopolysaccharidosis type IIIA (MPS IIIA) is a lysosomal storage disorder caused by N-sulfoglucosamine sulfohydrolase (SGSH) deficiency. SGSH removes the sulfate from N-sulfoglucosamine residues on the nonreducing end of heparan sulfate (HS-NRE) within lysosomes. Enzyme deficiency results in accumulation of partially degraded HS within lysosomes throughout the body, leading to a progressive severe neurological disease.

View Article and Find Full Text PDF

BMN 250 is being developed as enzyme replacement therapy for Sanfilippo type B, a primarily neurological rare disease, in which patients have deficient lysosomal alpha-N-acetylglucosaminidase (NAGLU) enzyme activity. BMN 250 is taken up in target cells by the cation-independent mannose 6-phosphate receptor (CI-MPR, insulin-like growth factor 2 receptor), which then facilitates transit to the lysosome. BMN 250 is dosed directly into the central nervous system via the intracerebroventricular (ICV) route, and the objective of this work was to compare systemic intravenous (IV) and ICV delivery of BMN 250 to confirm the value of ICV dosing.

View Article and Find Full Text PDF

Sanfilippo syndrome type B (mucopolysaccharidosis IIIB), caused by inherited deficiency of α--acetylglucosaminidase (NAGLU), required for lysosomal degradation of heparan sulfate (HS), is a pediatric neurodegenerative disorder with no approved treatment. Intracerebroventricular (ICV) delivery of a modified recombinant NAGLU, consisting of human NAGLU fused with insulin-like growth factor 2 (IGF2) for enhanced lysosomal targeting, was previously shown to result in marked enzyme uptake and clearance of HS storage in the  mouse brain. To further evaluate regional, cell type-specific, and dose-dependent biodistribution of NAGLU-IGF2 (BMN 250) and its effects on biochemical and histological pathology, mice were treated with 1-100 μg ICV doses (four times over 2 weeks).

View Article and Find Full Text PDF

Mucopolysaccharidosis type IIIB (MPS IIIB, Sanfilippo syndrome type B) is a lysosomal storage disease characterized by profound intellectual disability, dementia, and a lifespan of about two decades. The cause is mutation in the gene encoding α-N-acetylglucosaminidase (NAGLU), deficiency of NAGLU, and accumulation of heparan sulfate. Impediments to enzyme replacement therapy are the absence of mannose 6-phosphate on recombinant human NAGLU and the blood-brain barrier.

View Article and Find Full Text PDF

Synthetic H-bonded molecular zippers contain no sequence information that can be used to engineer the selective binding interactions characteristic of biopolymers; reversing the sense of the amide bonds in the two binding partners generates a new orthogonal recognition motif and the mutually complementary binding partners form complexes an order of magnitude more stable than the corresponding mismatch complexes.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessioniskebco45j8u4bi1a58a43o64plgom9o): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once