Background: Allopatric divergence across lineages can lead to post-zygotic reproductive isolation upon secondary contact and disrupt coevolution between mitochondrial and nuclear genomes, promoting emergence of genetic incompatibilities. A previous F ST scan on the transcriptome of the Baltic clam Macoma balthica highlighted several genes potentially involved in mito-nuclear incompatibilities (MNIs). As proteins involved in the mitochondrial oxidative phosphorylation (OXPHO) chain are prone to MNIs and can contribute to the maintenance of genetic barriers, the mitochondrial genomes of six Ma.
View Article and Find Full Text PDFHigh-resolution digital photography and graphical image analyses systems have been used to define external morphometric characters of shell deformations in four populations of the Baltic clam Macoma balthica from the Gulf of Gdansk (southern Baltic Sea). The proposed shell deformation indices (SDI), which were based on the relationship of selected dimensions in the posterior and the anterior part of the shell, showed at least three morphological features that provide a distinctive diagnosis of "regular" and "deformed" clams: the presence of flexure on the posterior side (SDI1), elongated posterior region (SDI2), and shell growth (SDI3). The degree and prevalence of deformed clams varied locally over space.
View Article and Find Full Text PDF