Antibiotic development traditionally involved large Phase 3 programs, preceded by Phase 2 studies. Recognizing the high unmet medical need for new antibiotics and, in some cases, challenges to conducting large clinical trials, regulators created a streamlined clinical development pathway in which a lean clinical efficacy dataset is complemented by nonclinical data as supportive evidence of efficacy. In this context, translational Pharmacokinetic/Pharmacodynamic (PK/PD) plays a key role and is a major contributor to a "robust" nonclinical package.
View Article and Find Full Text PDFMany in vitro and in vivo models are used in pharmacological research to evaluate the role of targeted proteins in a disease. Understanding the translational relevance and limitation of these models for analyzing a drug's disposition, pharmacokinetic/pharmacodynamic (PK/PD) profile, mechanism, and efficacy, is essential when selecting the most appropriate model of the disease of interest and predicting clinically efficacious doses of the investigational drug. Selected animal models used in ophthalmology, infectious diseases, oncology, autoimmune diseases, and neuroscience are reviewed here.
View Article and Find Full Text PDFSpinal muscular atrophy (SMA) is the leading genetic cause of infant and toddler mortality, and there is currently no approved therapy available. SMA is caused by mutation or deletion of the survival motor neuron 1 (SMN1) gene. These mutations or deletions result in low levels of functional SMN protein.
View Article and Find Full Text PDFPurpose: Antibiotic dose predictions based on PK/PD indices rely on that the index type and magnitude is insensitive to the pharmacokinetics (PK), the dosing regimen, and bacterial susceptibility. In this work we perform simulations to challenge these assumptions for meropenem and Pseudomonas aeruginosa.
Methods: A published murine dose fractionation study was replicated in silico.
An extensive fluorine scan of 1,3-oxazines revealed the power of fluorine(s) to lower the pKa and thereby dramatically change the pharmacological profile of this class of BACE1 inhibitors. The CF3 substituted oxazine 89, a potent and highly brain penetrant BACE1 inhibitor, was able to reduce significantly CSF Aβ40 and 42 in rats at oral doses as low as 1 mg/kg. The effect was long lasting, showing a significant reduction of Aβ40 and 42 even after 24 h.
View Article and Find Full Text PDFWe herein report the discovery of a new γ-secretase modulator class with an aminothiazole core starting from a HTS hit (3). Synthesis and SAR of this series are discussed. These novel compounds demonstrate moderate to good in vitro potency in inhibiting amyloid beta (Aβ) peptide production.
View Article and Find Full Text PDFObesity is a major risk factor in the development of conditions such as hypertension, hyperglycemia, dyslipidemia, coronary artery disease, and cancer. Several pieces of evidence across different species, including primates, underscore the implication of the histamine 3 receptor (H(3)R) in the regulation of food intake and body weight and the potential therapeutic effect of H(3)R inverse agonists. A pharmacophore model, based on public information and validated by previous investigations, was used to design several potential scaffolds.
View Article and Find Full Text PDFThe application of the evolutionary fragment-based de novo design tool TOPology Assigning System (TOPAS), starting from a known CB1R (CB-1 receptor) ligand, followed by further refinement principles, including pharmacophore compliance, chemical tractability, and drug likeness, allowed the identification of benzodioxoles as a novel CB1R inverse agonist series. Extensive multidimensional optimization was rewarded by the identification of promising lead compounds, showing in vivo activity. These compounds reversed the CP-55940-induced hypothermia in Naval Medical Research Institute (NMRI) mice and reduced body-weight gain, as well as fat mass, in diet-induced obese Sprague-Dawley rats.
View Article and Find Full Text PDFA hydroxamic acid screening hit 1 was elaborated to 5,5-dimethyl-2-oxoazepane derivatives exhibiting low nanomolar inhibition of gamma-secretase, a key proteolytic enzyme involved in Alzheimer's disease. Early ADME data showed a high metabolic clearance for the geminal dimethyl analogs which could be overcome by replacement with the bioisosteric geminal difluoro group. Synthesis and structure-activity relationship are discussed and in vivo active compounds are presented.
View Article and Find Full Text PDFBioorg Med Chem Lett
November 2007
Structural modifications of the gamma-secretase inhibitor, LY411575, led to a malonamide analogue (S),(S)-1 with potent inhibitory activity in vitro, but disappointing activity in a mouse model of Alzheimer's disease. Identification and replacement of a metabolically labile position provided an improved compound (R/S),(S)-13 with high in vitro activity (IC(50)=1.7 nM), and in vivo activity after oral administration (MED=3 mg/kg).
View Article and Find Full Text PDFHepatocyte assays, routinely used to assess the metabolic stability of new chemical entities, were recently improved by using hepatocytes in suspension instead of primary cultures [N. Blanchard, L. Richert, B.
View Article and Find Full Text PDF