Publications by authors named "Pascale Chabanet"

Background: In the context of global change, coral reefs and their associated biodiversity are under threat. Several conservation strategies using population genetics have been explored to protect them. However, some components of this ecosystem are understudied, such as hydrozoans, an important class of benthic organisms worldwide.

View Article and Find Full Text PDF

Mesophotic coral ecosystems (MCEs) have gained considerable attention this last decade but the paucity of knowledge on these ecosystems is pronounced, particularly in the Southwestern Indian Ocean region. We explore the spatial variation in macro-benthic and scleractinian communities along a wide depth gradient (15-95 m) and among contrasted sites around Reunion Island. Values for percent cover of macro-benthic and scleractinian communities varied significantly along depth, resulting in a vertical zonation of communities.

View Article and Find Full Text PDF

Context: The coronavirus pandemic (COVID-19) has caused a major health crisis, requiring the implementation of various public health measures in order to slow the spread of the virus and reduce the associated mortality. However, the success of these measures depends on people's acceptance of them. This research aimed at understanding people's representations of COVID-19 and its crisis management, and ultimately at understanding their attitudes toward health measures for counteracting the spread of COVID-19 in Reunion Island together with the behaviours expected of them.

View Article and Find Full Text PDF

Ecological baselines for the structure and functioning of ecosystems in the absence of human activity can provide essential information on their health status. The Glorieuses islands are located in the Western Indian Ocean (WIO) and can be considered as "pristine" ecosystems that have not been subjected to anthropogenic pressure. Their nutrient context and the microbial assemblages were assessed by determining the abundance of heterotrophic prokaryotes (archaea and bacteria), picocyanobacteria, picoeukaryotes, microphytoplankton and protozooplankton communities in five stations, during two contrasted periods (November 2015 and May 2016).

View Article and Find Full Text PDF

is an emerging zoonotic pathogen of increasing concern for aquaculture and has caused several epizootics in reef fishes from the Caribbean, the Red Sea and the Indian Ocean. To study the population structure, introduction pathways and evolution of over recurring epizootics on Reunion Island, we developed and validated a Multi Locus Sequence Typing (MLST) panel using genomic data obtained from 89 isolates sampled during epizootics occurring over the past 40years in Australia, Asia, the United States, Israel and Reunion Island. We selected eight housekeeping loci, which resulted in the greatest variation across the main phylogenetic clades highlighted by the whole genomic dataset.

View Article and Find Full Text PDF

The worldwide decline of coral reefs necessitates targeting management solutions that can sustain reefs and the livelihoods of the people who depend on them. However, little is known about the context in which different reef management tools can help to achieve multiple social and ecological goals. Because of nonlinearities in the likelihood of achieving combined fisheries, ecological function, and biodiversity goals along a gradient of human pressure, relatively small changes in the context in which management is implemented could have substantial impacts on whether these goals are likely to be met.

View Article and Find Full Text PDF

Coral reefs provide ecosystem goods and services for millions of people in the tropics, but reef conditions are declining worldwide. Effective solutions to the crisis facing coral reefs depend in part on understanding the context under which different types of conservation benefits can be maximized. Our global analysis of nearly 1,800 tropical reefs reveals how the intensity of human impacts in the surrounding seascape, measured as a function of human population size and accessibility to reefs ("gravity"), diminishes the effectiveness of marine reserves at sustaining reef fish biomass and the presence of top predators, even where compliance with reserve rules is high.

View Article and Find Full Text PDF

Recent surveys conducted on Reunion Island coral reefs revealed an atypical manifestation of black band disease on the main framework building coral, Porites lutea. This BBD manifestation (PorBBD) presented a thick lighter-colored band, which preceded the typical BBD lesion. Whilst BBD aetiology has been intensively described worldwide, it remains unclear if corals with apparently similar lesions across coral reefs are affected by the same pathogens.

View Article and Find Full Text PDF

Ongoing declines in the structure and function of the world’s coral reefs require novel approaches to sustain these ecosystems and the millions of people who depend on them3. A presently unexplored approach that draws on theory and practice in human health and rural development is to systematically identify and learn from the ‘outliers’—places where ecosystems are substantially better (‘bright spots’) or worse (‘dark spots’) than expected, given the environmental conditions and socioeconomic drivers they are exposed to. Here we compile data from more than 2,500 reefs worldwide and develop a Bayesian hierarchical model to generate expectations of how standing stocks of reef fish biomass are related to 18 socioeconomic drivers and environmental conditions.

View Article and Find Full Text PDF

Porites white patch syndrome (PWPS) is a coral disease recently described in the Western Indian Ocean. This study aimed to isolate and identify potential pathogens associated with PWPS utilizing both culture and nonculture screening techniques and inoculation trials. A total of 14 bacterial strains (those dominant in disease lesions, absent or rare in healthy tissues and considered potential pathogens in a previous study) were cultured and used to experimentally inoculate otherwise healthy individuals in an attempt to fulfil Henle-Koch's postulates.

View Article and Find Full Text PDF

Coral diseases have caused a substantial decline in the biodiversity and abundance of reef-building corals. To date, more than 30 distinct diseases of scleractinian corals have been reported, which cause progressive tissue loss and/or affect coral growth, reproductive capacity, recruitment, species diversity and the abundance of reef-associated organisms. While coral disease research has increased over the last 4 decades, very little is known about coral diseases in the Western Indian Ocean.

View Article and Find Full Text PDF

When tropical systems lose species, they are often assumed to be buffered against declines in functional diversity by the ability of the species-rich biota to display high functional redundancy: i.e., a high number of species performing similar functions.

View Article and Find Full Text PDF

The impact of anthropogenic activity on ecosystems has highlighted the need to move beyond the biogeographical delineation of species richness patterns to understanding the vulnerability of species assemblages, including the functional components that are linked to the processes they support. We developed a decision theory framework to quantitatively assess the global taxonomic and functional vulnerability of fish assemblages on tropical reefs using a combination of sensitivity to species loss, exposure to threats and extent of protection. Fish assemblages with high taxonomic and functional sensitivity are often exposed to threats but are largely missed by the global network of marine protected areas.

View Article and Find Full Text PDF

The scleractinian coral Porites lutea, an important reef-building coral on western Indian Ocean reefs (WIO), is affected by a newly-reported white syndrome (WS) the Porites white patch syndrome (PWPS). Histopathology and culture-independent molecular techniques were used to characterise the microbial communities associated with this emerging disease. Microscopy showed extensive tissue fragmentation generally associated with ovoid basophilic bodies resembling bacterial aggregates.

View Article and Find Full Text PDF

Delineating regions is an important first step in understanding the evolution and biogeography of faunas. However, quantitative approaches are often limited at a global scale, particularly in the marine realm. Reef fishes are the most diversified group of marine fishes, and compared to most other phyla, their taxonomy and geographical distributions are relatively well known.

View Article and Find Full Text PDF

The relationship between species and the functional diversity of assemblages is fundamental in ecology because it contains key information on functional redundancy, and functionally redundant ecosystems are thought to be more resilient, resistant and stable. However, this relationship is poorly understood and undocumented for species-rich coastal marine ecosystems. Here, we used underwater visual censuses to examine the patterns of functional redundancy for one of the most diverse vertebrate assemblages, the coral reef fishes of New Caledonia, South Pacific.

View Article and Find Full Text PDF

Difficulties in scaling up theoretical and experimental results have raised controversy over the consequences of biodiversity loss for the functioning of natural ecosystems. Using a global survey of reef fish assemblages, we show that in contrast to previous theoretical and experimental studies, ecosystem functioning (as measured by standing biomass) scales in a non-saturating manner with biodiversity (as measured by species and functional richness) in this ecosystem. Our field study also shows a significant and negative interaction between human population density and biodiversity on ecosystem functioning (i.

View Article and Find Full Text PDF

With rapidly increasing rates of contemporary extinction, predicting extinction vulnerability and identifying how multiple stressors drive non-random species loss have become key challenges in ecology. These assessments are crucial for avoiding the loss of key functional groups that sustain ecosystem processes and services. We developed a novel predictive framework of species extinction vulnerability and applied it to coral reef fishes.

View Article and Find Full Text PDF

Most current coral reef management is supported by mapping and monitoring limited in record length and spatial extent. These deficiencies were addressed in a multidisciplinary study of cyclone impacts on Aboré Reef, New-Caledonia. Local knowledge, high thematic-resolution maps, and time-series satellite imagery complemented classical in situ monitoring methods.

View Article and Find Full Text PDF

From 2008 onwards, the coral reefs of Koné (New Caledonia) will be subjected to a major anthropogenic perturbation linked to development of a nickel mine. Dredging and sediment runoff may directly damage the reef environment whereas job creation should generate a large demographic increase and thus a rise in fishing activities. This study analyzed reef fish assemblages between 2002 and 2007 with a focus on spatio-temporal variability.

View Article and Find Full Text PDF

Coral reefs have emerged as one of the ecosystems most vulnerable to climate variation and change. While the contribution of a warming climate to the loss of live coral cover has been well documented across large spatial and temporal scales, the associated effects on fish have not. Here, we respond to recent and repeated calls to assess the importance of local management in conserving coral reefs in the context of global climate change.

View Article and Find Full Text PDF