Publications by authors named "Pascal T"

The structural and chemical properties of metal nanoparticles are often dictated by their interactions with molecular ligand shells. These interactions are highly material-specific and can vary significantly even among elements within the same group or materials with similar crystal structure. In this study, we surveyed the heterogeneous interactions between an -terphenyl isocyanide ligand and Au and Ag nanoparticles (NPs) at the single-molecule limit.

View Article and Find Full Text PDF

Direct imaging of single molecules at nanostructured interfaces is a grand challenge with potential to enable new, precise material architectures and technologies. Of particular interest are the structural morphology and spectroscopic signatures of the adsorbed molecule, where modern probes are only now being developed with the necessary spatial and energetic resolution to provide detailed information at the molecule-surface interface. Here, we directly characterize the adsorption of individual -terphenyl isocyanide ligands on a reconstructed Au(111) surface through scanning tunneling microscopy and inelastic electron tunneling spectroscopy.

View Article and Find Full Text PDF

Since the onset of the coronavirus disease (COVID-19) pandemic in Belgium, UZ/KU Leuven has played a crucial role as the National Reference Centre (NRC) for respiratory pathogens, to be the first Belgian laboratory to develop and implement laboratory developed diagnostic assays for SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) and later to assess the quality of commercial kits. To meet the growing demand for decentralised testing, both clinical laboratories and government-supported high-throughput platforms were gradually deployed across Belgium. Consequently, the role of the NRC transitioned from a specialised testing laboratory to strengthening capacity and coordinating quality assurance.

View Article and Find Full Text PDF

Achieving increased energy density under extreme operating conditions remains a major challenge in rechargeable batteries. Herein, we demonstrate an all-fluorinated ester-based electrolyte comprising partially fluorinated carboxylate and carbonate esters. This electrolyte exhibits temperature-resilient physicochemical properties and moderate ion-paired solvation, leading to a half solvent-separated and half contact-ion pair in a sole electrolyte.

View Article and Find Full Text PDF

The future application of Li metal batteries (LMBs) at scale demands electrolytes that endow improved performance under fast-charging and low-temperature operating conditions. Recent works indicate that desolvation kinetics of Li plays a crucial role in enabling such behavior. However, the modulation of this process has typically been achieved through inducing qualitative degrees of ion pairing into the system.

View Article and Find Full Text PDF

In the course of our investigations of the adsorption of ions to the air-water interface, we previously reported the surprising result that doubly charged carbonate anions exhibit a stronger surface affinity than singly charged bicarbonate anions. In contrast to monovalent, weakly hydrated anions, which generally show enhanced concentrations in the interfacial region, multivalent (and strongly hydrated) anions are expected to show a much weaker surface propensity. In the present work, we use resonantly enhanced deep-UV second-harmonic generation spectroscopy to measure the Gibbs free energy of adsorption of both carbonate (CO) and bicarbonate (HCO) anions to the air-water interface.

View Article and Find Full Text PDF

Li metal batteries applying Li-rich, Mn-rich (LMR) layered oxide cathodes present an opportunity to achieve high-energy density at reduced cell cost. However, the intense oxidizing and reducing potentials associated with LMR cathodes and Li anodes present considerable design challenges for prospective electrolytes. Herein, we demonstrate that, somewhat surprisingly, a properly designed localized-high-concentration electrolyte (LHCE) based on ether solvents is capable of providing reversible performance for Li||LMR cells.

View Article and Find Full Text PDF

Colorimetric biosensors based on gold nanoparticle (AuNP) aggregation are often challenged by matrix interference in biofluids, poor specificity, and limited utility with clinical samples. Here, we propose a peptide-driven nanoscale disassembly approach, where AuNP aggregates induced by electrostatic attractions are dissociated in response to proteolytic cleavage. Initially, citrate-coated AuNPs were assembled via a short cationic peptide (RRK) and characterized by experiments and simulations.

View Article and Find Full Text PDF

Nonaqueous fluidic transport and ion solvation properties under nanoscale confinement are poorly understood, especially in ion conduction for energy storage and conversion systems. Herein, metal-organic frameworks (MOFs) and aprotic electrolytes are studied as a robust platform for molecular-level insights into electrolyte behaviors in confined spaces. By employing computer simulations, along with spectroscopic and electrochemical measurements, we demonstrate several phenomena that deviate from the bulk, including modulated solvent molecular configurations, aggregated solvation structures, and tunable transport mechanisms from quasi-solid to quasi-liquid in functionalized MOFs.

View Article and Find Full Text PDF

Solid-state electrolytes overcome many challenges of present-day lithium ion batteries, such as safety hazards and dendrite formation. However, detailed understanding of the involved lithium dynamics is missing due to a lack of in operando measurements with chemical and interfacial specificity. Here we investigate a prototypical solid-state electrolyte using linear and nonlinear extreme-ultraviolet spectroscopies.

View Article and Find Full Text PDF

Lithium graphite intercalation compounds (Li-GICs) are essential materials for modern day portable electronics and obtaining insights into their atomic structure and thermodynamics is of fundamental interest. Here we explore the electronic and atomic states of Li-GICs at varying degrees of Lithium loading (i.e.

View Article and Find Full Text PDF

Transition-metal dichalcogenides (TMDCs) such as MoS are Earth-abundant catalysts that are attractive for many chemical processes, including the carbon dioxide reduction reaction (CO2RR). While many studies have correlated synthetic preparation and architectures with macroscopic electrocatalytic performance, not much is known about the state of MoS under functional conditions, particularly its interactions with target molecules like CO. Here, we combine Mo K- and S K-edge X-ray absorption spectroscopy (XAS) with first-principles simulations to track changes in the electronic structure of MoS nanosheets during CO2RR.

View Article and Find Full Text PDF

Introduction: We compared the performance of real-time PCR with culture-based methods for identifying bacteria in sputum samples from patients with chronic obstructive pulmonary disease (COPD) in three studies.

Methods: This was an exploratory analysis of sputum samples collected during an observational study of 127 patients (AERIS; NCT01360398), phase 2 study of 145 patients (NTHI-004; NCT02075541), and phase 2b study of 606 patients (NTHI-MCAT-002; NCT03281876). Bacteria were identified by culture-based microbiological methods in local laboratories using fresh samples or by real-time PCR in a central laboratory using frozen samples.

View Article and Find Full Text PDF

The π-conjugated backbone of semiconducting polymers gives rise to both their electronic properties and structural rigidity. However, current computational methods for understanding the rigidity of polymer chains fail in one crucial way. Namely, standard torsional scan (TS) methods do not satisfactorily capture the behavior of polymers exhibiting a high degree of steric hindrance.

View Article and Find Full Text PDF

Understanding the role of ferroelectric polarization in modulating the electronic and structural properties of crystals is critical for advancing these materials for overcoming various technological and scientific challenges. However, due to difficulties in performing experimental methods with the required resolution, or in interpreting the results of methods therein, the nanoscale morphology and response of these surfaces to external electric fields has not been properly elaborated. In this work we investigate the effect of ferroelectric polarization and local distortions in a BaTiO perovskite, using two widely used computational approaches which treat the many-body nature of X-ray excitations using different philosophies, namely the many-body, delta-self-consistent-field determinant (mb-ΔSCF) and the Bethe-Salpeter equation (BSE) approaches.

View Article and Find Full Text PDF

The interaction of intense light with matter gives rise to competing nonlinear responses that can dynamically change material properties. Prominent examples are saturable absorption (SA) and two-photon absorption (TPA), which dynamically increase and decrease the transmission of a sample depending on pulse intensity, respectively. The availability of intense soft X-ray pulses from free-electron lasers (FELs) has led to observations of SA and TPA in separate experiments, leaving open questions about the possible interplay between and relative strength of the two phenomena.

View Article and Find Full Text PDF

Organic ligands are critical in determining the physiochemical properties of inorganic nanocrystals. However, precise nanocrystal surface modification is extremely difficult to achieve. Most research focuses on finding ligands that fully passivate the nanocrystal surface, with an emphasis on the supramolecular structure generated by the ligand shell.

View Article and Find Full Text PDF

Background: Bacterial infections are associated with acute exacerbations of chronic obstructive pulmonary disease (AECOPD), but the mechanism is incompletely understood.

Method: In a COPD observational study (NCT01360398), sputum samples were collected monthly at the stable state and exacerbation. analyses of 1307 non-typeable (NTHi) isolates from 20 patients and 756 isolates from 38 patients in one year of follow-up were conducted by multilocus sequence typing (MLST).

View Article and Find Full Text PDF

All-climate temperature operation capability and increased energy density have been recognized as two crucial targets, but they are rarely achieved together in rechargeable lithium (Li) batteries. Herein, we demonstrate an electrolyte system by using monodentate dibutyl ether with both low melting and high boiling points as the sole solvent. Its weak solvation endows an aggregate solvation structure and low solubility toward polysulfide species in a relatively low electrolyte concentration (2 mol L).

View Article and Find Full Text PDF

To better understand the influence of electrolyte chemistry on the ion-desolvation portion of charge-transfer beyond the commonly applied techniques, we apply free-energy sampling to simulations involving diethyl ether (DEE) and 1,3-dioxoloane/1,2-dimethoxyethane (DOL/DME) electrolytes, which display bulk solvation structures dominated by ion-pairing and solvent coordination, respectively. This analysis was conducted at a pristine electrode with and without applied bias at 298 and 213 K to provide insights into the low-temperature charge-transfer behavior, where it has been proposed that desolvation dominates performance. We find that, to reach the inner Helmholtz layer, ion-paired structures are advantageous and that the Li ion must reach a total coordination number of 3, which requires the shedding of 1 species in the DEE electrolyte or 2-3 species in DOL/DME.

View Article and Find Full Text PDF

Ferroelectric nanomaterials offer the promise of switchable electronic properties at the surface, with implications for photo- and electrocatalysis. Studies to date on the effect of ferroelectric surfaces in electrocatalysis have been primarily limited to nanoparticle systems where complex interfaces arise. Here, we use MBE-grown epitaxial BaTiO thin films with atomically sharp interfaces as model surfaces to demonstrate the effect of ferroelectric polarization on the electronic structure, intermediate binding energy, and electrochemical activity toward the hydrogen evolution reaction (HER).

View Article and Find Full Text PDF
Article Synopsis
  • Preventing spontaneous crystallization in supersaturated solutions is essential for industries like chemical, pharmaceutical, and food, but challenges persist in both lab and real-world applications.
  • The study examines how antifreeze proteins (AFPs) can hinder crystallization, focusing on D-mannitol, a sugar alcohol, and showing that insect AFP DAFP1 can completely stop its nucleation.
  • Findings reveal that AFPs work by binding to crystal-forming molecules and altering their behavior in solution, suggesting that natural polymers could be key in developing new methods to control crystallization processes.
View Article and Find Full Text PDF

Most commercial peach [Prunus persica (L.) Batsch] cultivars have leaves with extrafloral nectaries (EFNs). Breeders have selected this character over time, as they observed that the eglandular phenotype resulted in high susceptibility to peach powdery mildew, a major disease of peach trees.

View Article and Find Full Text PDF

Second harmonic generation (SHG) spectroscopy ubiquitously enables the investigation of surface chemistry, interfacial chemistry, as well as symmetry properties in solids. Polarization-resolved SHG spectroscopy in the visible to infrared regime is regularly used to investigate electronic and magnetic order through their angular anisotropies within the crystal structure. However, the increasing complexity of novel materials and emerging phenomena hampers the interpretation of experiments solely based on the investigation of hybridized valence states.

View Article and Find Full Text PDF