Thousands of maize landraces are stored in seed banks worldwide. Doubled-haploid libraries (DHL) produced from landraces harness their rich genetic diversity for future breeding. We investigated the prospects of genomic prediction (GP) for line performance in DHL from six European landraces and 53 elite flint (EF) lines by comparing four scenarios: GP within a single library (sL); GP between pairs of libraries (LwL); and GP among combined libraries, either including (cLi) or excluding (cLe) lines from the training set (TS) that belong to the same DHL as the prediction set.
View Article and Find Full Text PDFGenomic selection (GS) offers the possibility to estimate the effects of genome-wide molecular markers, which can be used to calculate genomic estimated breeding values (GEBVs) for individuals without phenotypes. GEBVs can serve as a selection criterion in recurrent GS, maximizing single-cycle but not necessarily long-term genetic gain. As simple genome-wide sums, GEBVs do not take into account other genomic information, such as the map positions of loci and linkage phases of alleles.
View Article and Find Full Text PDFA major application of genomic prediction (GP) in plant breeding is the identification of superior inbred lines within families derived from biparental crosses. When models for various traits were trained within related or unrelated biparental families (BPFs), experimental studies found substantial variation in prediction accuracy (PA), but little is known about the underlying factors. We used SNP marker genotypes of inbred lines from either elite germplasm or landraces of maize ( L.
View Article and Find Full Text PDFThousands of landraces are stored in seed banks as "gold reserves" for future use in plant breeding. In many crops, their utilization is hampered because they represent heterogeneous populations of heterozygous genotypes, which harbor a high genetic load. We show, with high-density genotyping in five landraces of maize, that libraries of doubled-haploid (DH) lines capture the allelic diversity of genetic resources in an unbiased way.
View Article and Find Full Text PDFRecurrent selection (RS) has been used in plant breeding to successively improve synthetic and other multiparental populations. Synthetics are generated from a limited number of parents [Formula: see text] but little is known about how [Formula: see text] affects genomic selection (GS) in RS, especially the persistency of prediction accuracy ([Formula: see text]) and genetic gain. Synthetics were simulated by intermating [Formula: see text]= 2-32 parent lines from an ancestral population with short- or long-range linkage disequilibrium ([Formula: see text]) and subjected to multiple cycles of GS.
View Article and Find Full Text PDFSynthetics play an important role in quantitative genetic research and plant breeding, but few studies have investigated the application of genomic prediction (GP) to these populations. Synthetics are generated by intermating a small number of parents ([Formula: see text] and thereby possess unique genetic properties, which make them especially suited for systematic investigations of factors contributing to the accuracy of GP. We generated synthetics in silico from [Formula: see text]2 to 32 maize (Zea mays L.
View Article and Find Full Text PDFDeterministic formulas accurately forecast the decline in predictive ability of genomic prediction with changing testers, target environments or traits and truncation selection. Genomic prediction of testcross performance (TP) was found to be a promising selection tool in hybrid breeding as long as the same tester and environments are used in the training and prediction set. In practice, however, selection targets often change in terms of testers, target environments or traits leading to a reduced predictive ability.
View Article and Find Full Text PDF