Publications by authors named "Pascal Rigolet"

Objective: To evaluate the role of systematic lymphadenectomy in low-grade serous ovarian cancer (LGSOC) and determine its impact on clinical outcomes in overall survival (OS) and disease-free survival (DFS) terms.

Methods: A comprehensive, systematic computer literature search on PubMed was performed using the following Medical Subject Headings (MeSH) terms: "low grade serous ovarian cancer" AND/OR "lymphadenectomy" AND/OR "staging" AND/OR "ovarian cancer" AND/OR "cytoreduction". Separate searches were performed with MeSH terms on MEDLINE and EMBASE to extract all the relevant literature available.

View Article and Find Full Text PDF

Introduction: In early cervical cancer (EEC), 10 to 15% of patients without nodal metastasis (N-) will suffer from recurrences with further similar survival as N+ patients. However, no clinical, imaging or pathological risk-factor is today available to identify them. In the present study, we hypothesized that the N- histologically characterized patients who present a poor prognosis could be patients for whom metastasis are missed by classical procedure.

View Article and Find Full Text PDF

Objective: We performed a systematic literature review and a subsequent meta-analysis to compare traditional treatment options, i.e., antihormonal and cytotoxic, in LGSOC.

View Article and Find Full Text PDF

The multidomain non-structural protein 3 (Nsp3) is the largest protein encoded by coronavirus (CoV) genomes and several regions of this protein are essential for viral replication. Of note, SARS-CoV Nsp3 contains a SARS-Unique Domain (SUD), which can bind Guanine-rich non-canonical nucleic acid structures called G-quadruplexes (G4) and is essential for SARS-CoV replication. We show herein that the SARS-CoV-2 Nsp3 protein also contains a SUD domain that interacts with G4s.

View Article and Find Full Text PDF

Background: In drug design, one may be confronted to the problem of finding hits for targets for which no small inhibiting molecules are known and only low-throughput experiments are available (like ITC or NMR studies), two common difficulties encountered in a typical academic setting. Using a virtual screening strategy like docking can alleviate some of the problems and save a considerable amount of time by selecting only top-ranking molecules, but only if the method is very efficient, i.e.

View Article and Find Full Text PDF

In vertebrates, XRCC3 is one of the five Rad51 paralogs that plays a central role in homologous recombination (HR), a key pathway for maintaining genomic stability. While investigating the potential role of human XRCC3 (hXRCC3) in the inhibition of DNA replication induced by UVA radiation, we discovered that hXRCC3 cysteine residues are oxidized following photosensitization by UVA. Our in silico prediction of the hXRCC3 structure suggests that 6 out of 8 cysteines are potentially accessible to the solvent and therefore potentially exposed to ROS attack.

View Article and Find Full Text PDF

Insulin Degrading Enzyme (IDE) is a protease conserved through evolution with a role in diabetes and Alzheimer's disease. The reason underlying its ubiquitous expression including cells lacking identified IDE substrates remains unknown. Here we show that the fission yeast IDE homologue (Iph1) modulates cellular sensitivity to endoplasmic reticulum (ER) stress in a manner dependent on TORC1 (Target of Rapamycin Complex 1).

View Article and Find Full Text PDF

PepX is a X-prolyl dipeptidyl aminopeptidase of S15 family that cleaves dipeptides from the N-terminus of polypeptides having a proline or alanine residue at the second position. Involved in bacterial nutrition and in peptide maturation, this serine exopeptidase, counterpart of the mammalian DDP-4, has been proposed to play a role in pathogenicity for Streptococci and to be a promising target against trypanosomes. Searching for specific inhibitors, we undertook docking simulations on the whole surface of PepX from Lactococcus lactis, type example of the S15 family, which revealed a new putative binding site in connection with the active site and involving the C-terminal domain.

View Article and Find Full Text PDF

The nsp1 protein of the highly pathogenic SARS coronavirus suppresses host protein synthesis, including genes involved in the innate immune system. A bioinformatic analysis revealed that the nsp1 proteins of group I and SARS coronaviruses have similar structures. Nsp1 proteins of group I coronaviruses interacted with host ribosomal 40S subunit and did not inhibit IRF-3 activation.

View Article and Find Full Text PDF

The RecQ family helicases catalyze the DNA unwinding reaction in an ATP hydrolysis-dependent manner. We investigated the mechanism of DNA unwinding by the Escherichia coli RecQ helicase using a new sensitive helicase assay based on fluorescence cross-correlation spectroscopy (FCCS) with two-photon excitation. The FCCS-based assay can be used to measure the unwinding activity under both single and multiple turnover conditions with no limitation related to the size of the DNA strands constituting the DNA substrate.

View Article and Find Full Text PDF

Bloom's syndrome (BS) is a rare human autosomal recessive disorder characterized by a strong predisposition to a wide range of cancers commonly affecting the general population. Understanding the functioning mechanism of the BLM protein may provide the opportunity to develop new effective therapy strategies. In this work, we studied the DNA unwinding kinetic mechanism of the helicase core of the BLM protein using various stopped-flow assays.

View Article and Find Full Text PDF

Bloom syndrome (BS) is an autosomal recessive disorder characterized by genomic instability and the early development of many types of cancer. Missense mutations have been identified in the BLM gene (encoding a RecQ helicase) in affected individuals, but the molecular mechanism and the structural basis of the effects of these mutations remain to be elucidated. We analysed five disease-causing missense mutations that are localized in the BLM helicase core region: Q672R, I841T, C878R, G891E and C901Y.

View Article and Find Full Text PDF

RecQ family helicases are essential in maintaining chromosomal DNA stability and integrity. Despite extensive studies, the mechanisms of these enzymes are still poorly understood. Crystal structures of many helicases reveal a highly conserved arginine residue located near the gamma-phosphate of ATP.

View Article and Find Full Text PDF

Bloom's syndrome (BS) is an autosomal recessive human disorder characterized by genomic instability and a predisposition to a wide variety of cancers. The gene mutated in BS, BLM, encodes a protein containing three domains: an N-terminal domain whose function remains elusive, a helicase domain characterized by seven 'signature' motifs conserved in a wide range of helicases and a C-terminal extension that can be further divided into two sub-domains: RecQ-Ct and HRDC. The RecQ-Ct domain appears essential because two point-mutations altering highly conserved cysteine residues within this domain have been found in BS patients.

View Article and Find Full Text PDF

X-prolyl dipeptidyl aminopeptidases (X-PDAP) are enzymes catalysing the release of dipeptides from the amino termini of polypeptides containing a proline or an alanine at the penultimate position. Involved in various mammalian regulation processes, as well as in chronic human diseases, they have been proposed to play a role in pathogenicity for Streptococci. We compared the structure of X-PDAP from Lactococcus lactis (PepX) with its human counterpart DPP-IV.

View Article and Find Full Text PDF

The RecQ family of DNA helicases has been shown to be important for the maintenance of genomic integrity. Mutations in human RecQ genes lead to genomic instability and cancer. Several RecQ family of helicases contain a putative zinc finger motif of the C4 type at the C terminus that has been identified in the crystalline structure of RecQ helicase from Escherichia coli.

View Article and Find Full Text PDF

The X-prolyl dipeptidyl aminopeptidase (X-PDAP) from Lactococcus lactis is a dimeric enzyme catalyzing the removal of Xaa-Pro dipeptides from the N terminus of peptides. The structure of the enzyme was solved at 2.2 A resolution and provides a model for the peptidase family S15.

View Article and Find Full Text PDF