The widespread production and use of plastics with poor recycling practices have resulted in higher discharge of plastic waste into the aquatic systems. Nanoplastics (NPLs) resulting from the fragmentation of microplastics, are considered as the most hazardous fraction. Adsorption to mineral surfaces is considered as one of the most important processes controlling the fate and transport of nanomaterials both in the natural environment and conventional filtration systems.
View Article and Find Full Text PDFInformation about the influence of surface charges on nanoplastics (NPLs) transport in porous media, the influence of NPL concentrations on porous media retention capacities, and changes in porous media adsorption capacities in the presence of natural water components are still scarce. In this study, laboratory column experiments are conducted to investigate the transport behavior of positively charged amidine polystyrene (PS) latex NPLs and negatively charged sulfate PS latex NPLs in quartz sand columns saturated with ultrapure water and Geneva Lake water, respectively. Results obtained for ultrapure water show that amidine PS latex NPLs have more affinity for negatively charged sand surfaces than sulfate PS latex NPLs because of the presence of attractive electrical forces.
View Article and Find Full Text PDFMicroplastics (MPs) have been observed in the oceans, fresh waters, karstic water and remote water bodies. However, little is known on groundwater contamination, which is a natural resource of utmost importance for millions of people and is often perceived as a reliable source of water. Moreover, nanofiltration is perceived as a reliable technology to remove contaminants from water.
View Article and Find Full Text PDF