Snakes and lizards (Squamata) represent a third of terrestrial vertebrates and exhibit spectacular innovations in locomotion, feeding, and sensory processing. However, the evolutionary drivers of this radiation remain poorly known. We infer potential causes and ultimate consequences of squamate macroevolution by combining individual-based natural history observations (>60,000 animals) with a comprehensive time-calibrated phylogeny that we anchored with genomic data (5400 loci) from 1018 species.
View Article and Find Full Text PDFThe relationship between ecology and morphology is a cornerstone of evolutionary biology, and quantifying variation across environments can shed light on processes that give rise to biodiversity. Three morphotypes of the Steller's Jay () occupy different ecoregions in western North America, which vary in climate and landcover. These morphotypes (Coastal, Interior, Rocky Mountain) differ in size, plumage coloration, and head pattern.
View Article and Find Full Text PDFPopulation divergence is the first step in allopatric speciation, as has long been recognized in both theoretical models of speciation and empirical explorations of natural systems. All else being equal, lineages with substantial population differentiation should form new species more quickly than lineages that maintain range-wide genetic cohesion through high levels of gene flow. However, there have been few direct tests of the extent to which population differentiation predicts speciation rates as measured on phylogenetic trees.
View Article and Find Full Text PDFGenetic diversity is a fundamental characteristic of species and is affected by many factors, including mutation rate, population size, life history and demography. To better understand the processes that influence levels of genetic diversity across taxa, we collected genome-wide restriction-associated DNA data from more than 500 individuals spanning 76 nominal species of Australian scincid lizards in the genus To avoid potential biases associated with variation in taxonomic practice across the group, we used coalescent-based species delimitation to delineate 83 species-level lineages within the genus for downstream analyses. We then used these genetic data to infer levels of within-population genetic diversity.
View Article and Find Full Text PDFAdvances in the generation, retrieval, and analysis of phylogenetic data have enabled researchers to create phylogenies that contain many thousands of taxa. These "macrophylogenies"-large trees that typically derive from megaphylogeny, supermatrix, or supertree approaches-provide researchers with an unprecedented ability to conduct evolutionary analyses across broad phylogenetic scales. Many studies have now used these phylogenies to explore the dynamics of speciation, extinction, and phenotypic evolution across large swaths of the tree of life.
View Article and Find Full Text PDFPast climate change has caused shifts in species distributions and undoubtedly impacted patterns of genetic variation, but the biological processes mediating responses to climate change, and their genetic signatures, are often poorly understood. We test six species-specific biologically informed hypotheses about such processes in canyon live oak (Quercus chrysolepis) from the California Floristic Province. These hypotheses encompass the potential roles of climatic niche, niche multidimensionality, physiological trade-offs in functional traits, and local-scale factors (microsites and local adaptation within ecoregions) in structuring genetic variation.
View Article and Find Full Text PDFBatesian mimicry, in which harmless species (mimics) deter predators by deceitfully imitating the warning signals of noxious species (models), generates striking cases of phenotypic convergence that are classic examples of evolution by natural selection. However, mimicry of venomous coral snakes has remained controversial because of unresolved conflict between the predictions of mimicry theory and empirical patterns in the distribution and abundance of snakes. Here we integrate distributional, phenotypic and phylogenetic data across all New World snake species to demonstrate that shifts to mimetic coloration in nonvenomous snakes are highly correlated with coral snakes in both space and time, providing overwhelming support for Batesian mimicry.
View Article and Find Full Text PDFThe tropics contain far greater numbers of species than temperate regions, suggesting that rates of species formation might differ systematically between tropical and non-tropical areas. We tested this hypothesis by reconstructing the history of speciation in New World (NW) land birds using BAMM, a Bayesian framework for modelling complex evolutionary dynamics on phylogenetic trees. We estimated marginal distributions of present-day speciation rates for each of 2571 species of birds.
View Article and Find Full Text PDFBy employing a recently inferred phylogeny and museum occurrence records, we examine the relationship of ecological niche evolution to diversification in the largest family of songbirds, the tanagers (Thraupidae). We test whether differences in species numbers in the major clades of tanagers can be explained by differences in rate of climatic niche evolution. We develop a methodological pipeline to process and filter occurrence records.
View Article and Find Full Text PDFThraupidae is the second largest family of birds and represents about 4% of all avian species and 12% of the Neotropical avifauna. Species in this family display a wide range of plumage colors and patterns, foraging behaviors, vocalizations, ecotypes, and habitat preferences. The lack of a complete phylogeny for tanagers has hindered the study of this evolutionary diversity.
View Article and Find Full Text PDF